Searches for top squark pair production with the CMS detector

Pieter Everaerts

November 15, 2016

Pieter Everaerts

Searches for top squarks

November 15, 2016

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Overview

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Motivation

- In 2012 the Higgs was seen in the ATLAS and CMS detectors
 - Gives mass to other particles
- Led to detailed measurements of its properties, e.g. m_H≈125 GeV
- Irony: the mass of the Higgs not understood

Searches for top squarks

Pieter Everaerts

Corrections to Higgs mass

- Quantum corrections to the Higgs boson mass become uncomfortably large in the Standard Model (SM)
 - Due to top quark loops

$$\Delta M_{H}^{2} \sim |\lambda_{t}|^{2} \left[-\Lambda_{UV}^{2} + \frac{3}{2} M_{t}^{2} \log(\frac{\Lambda_{UV}^{2}}{M_{t}^{2}}) \right]$$
$$-\frac{H}{t} \left(\frac{t}{t} \right) - \frac{1}{2} M_{H}^{2} + \Delta M_{t}^{2} M_{t}^{2} \left[-M_{H}^{2} + M_{H}^{2} + M_{H}^{2$$

 Λ_{UV} is SM cut-off, without new physics at Planck scale (10¹⁹ Gev)

- Cancellation of 10⁻³⁴? Highly unlikely!

• Alternative: new symmetry (supersymmetry)

Pieter Everaerts

Searches for top squarks

Supersymmetry (SUSY)

- New fundamental symmetry relating bosons with fermions. Thus, each SM particle has a SUSY partner
- Imposing R-parity conservation:
 - SUSY particles produced in pairs
 - Lightest SUSY particle (LSP) is stable neutral particle
 - WIMP dark matter candidate!

Pieter Everaerts

Searches for top squarks

Solving the problem

- Quantum corrections to the Higgs boson mass become uncomfortably large in the Standard Model (SM)
 - Adding top squarks

$$\Delta M_{H}^{2} \sim |\lambda_{t}|^{2} \left[-\Lambda_{0V}^{2} + \frac{3}{2} M_{t}^{2} \log(\frac{\Lambda_{UV}^{2}}{M_{t}^{2}}) + \Lambda_{0V}^{2} - \frac{3}{2} M_{\tilde{t}}^{2} \log(\frac{\Lambda_{UV}^{2}}{M_{\tilde{t}}^{2}})) + \cdots \right]$$

$$-\frac{H}{t} + \frac{H}{t} + \frac{H}{t}$$

- Top squarks cancel the quadratic divergence
- Left-over terms proportional to $M_t^2 M_{\tilde{t}}^2$
 - Light stops make a more "natural" solution

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Top squark production

 For high top squark masses larger cross section increase than for main $t\overline{t}$ background

Pieter Everaerts

Top squark decay

Rich spectrum of decay modes depending on SUSY mass spectrum and couplings

10

Top neutralino decay

Top squark can decay to a top quark and a LSP

Top neutralino decay

Top squark can decay to a top quark and a LSP

- Same final state can also target direct DM searches with low mass spin-0 mediator
 - In ATLAS same analysis used for both with optimized selection

Bottom chargino decay

• Top squark can decay to a bottom quark and a chargino

Pieter Everaerts

Searches for top squarks

Top squark decay

Rich spectrum of decay modes depending on SUSY mass spectrum and couplings

Experimental signatures for pair production

Final states (2 top squarks) have two on- or off-shell W bosons
 Leads to 0, 1 or 2 leptons in the final state

- $\tilde{t}_1 \rightarrow c + \chi_1^0$ a bit different
 - Target with mono-jet like search or use charm-tagging
- Alternative decays possible leading to lots of experimental signature:
 - Long-lived, R-parity violating, GSMB scenario's

Dataset

- Corresponding to the dataset for summer conference: 12.9 fb⁻¹
- Total 13 TeV dataset: ~38.3 fb⁻¹ (2016) + 2.3 fb⁻¹ (2015)

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

Pieter Everaerts

Searches for top squarks

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2I backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

Single-lepton analyis

Pieter Everaerts

Searches for top squarks

Baseline selection

- Selection (trigger-inspired):
 - Exactly 1 electron or muon with p_T >20 GeV
 - MET>250 GeV
 - At least 1 b-tagged jet

- Main backgrounds:
 - 18 tī
 - W+jets
 - 28 tt
 - Single top
 - Dibosons, tīV

Pieter Everaerts

Searches for top squarks

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2l backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

Killing the single-lepton background

- Largest two backgrounds are tt and W+Jets
 - No endpoint in transverse mass due to extra MET from LSPs

 $M_T^{\dagger}(\ell,\nu)^2 = (E_T(\ell) + E_T(\nu))^2 - (\vec{p_T}(\ell) + \vec{p_T}(\nu))^2$

Killing the single-lepton background

- Transverse mass point more efficient for 1l $t\overline{t}$
 - Top mass imposes kinematic constraint on W mass
 - Tail for tt dominated by resolution effects, for W+Jets by off-shell W bosons

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2I backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

Removing dilepton backgrounds

After tight M_T cut dilepton backgrounds (tt and tW) dominate
 Try to minimize this background by optimizing lepton vetoes

Hadronic top decays

- Only signal has a hadronic top decay Misidentified leptonic top decay Hadronic top decay W^+ P_2 P_2 lostt $\tilde{\chi}_1^0$ h $\overline{W}_{-} \tilde{\chi}_{1}^{0}$ P_1 ν 2l tt background **Stop signal**
- Require at least 4 jets
 - 3 for boosted scenario's when W jets will be merged
- Can be exploited further with $(low-p_T)$ top tagger

Attacking the dilepton background

- After tight M_T cut dilepton backgrounds (tt and tW) dominate
 - Target lost lepton background with dedicated variable

Pieter Everaerts

Searches for top squarks

Attacking the dilepton background

- After tight M_T cut dilepton backgrounds (tt and tW) dominate
 - Use M_{T2}^W : minimum mother particle mass compatible with W mass and MET constraints assuming 2I tt

Pieter Everaerts

Searches for top squarks

Modified topness

- Remove some of the background where one of the jets is not in the acceptance
 - Also helps for signal acceptance for asymmetric decays
 - Improved tW rejection

29

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2I backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

Rare SM backgrounds

- Rare SM backgrounds enter through $Z \rightarrow vv$ decays:
 - $t\bar{t}Z:$
 - Almost indistinguishable
 - Real MET, 2 b quarks, hadronic top decay

2.3 fb⁻¹(13 TeV) √ອ10⁵ ເປັ CMS tt→2/ $tt \rightarrow 1/$ tW Simulation W+jets Rare ഹ10⁴ $\dot{t} \rightarrow t \widetilde{\chi}_{1}^{0} / \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\pm} (600, 50)$ Events / $\widetilde{t} \rightarrow t \widetilde{\chi}^0_1$ (300,150) $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ (600,50) 10 10-1 10⁻² 200 300 500 600 700 100400 E^{miss}_T [GeV]

- Also WZ, tqZ,...
- Use differences in MET spectrum

Pieter Everaerts

Searches for top squarks

Selection summary

- Exclusive search regions designed to target specific regions
 - Extra gain due to statistical combination (low ΔM)

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2I backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

Background prediction

- Dominant background predicted in data-driven way
 - Use control regions very similar to signal region

	Exactly 1	1l + veto lepton
0 b-tag	Ob control region W+Jets dominated	
≥1b-tag	T _{Nb} Signal T _{LL} region	2l control region tt→2l dominated

- Smaller backgrounds taken from simulation after estimating experimental and theoretical uncertainties
 - Rare SM backgrounds
 - First checks done to get normalization from 3I CR and distributions from $tt\gamma$
 - 1l tt : dominated by MET resolution
 - W+Jets in low M_{T2}^W regions:
 - even 0b control region dominated by lost lepton background

Pieter Everaerts

Searches for top squarks

W+Jets background

ullet

Pieter Everaerts

November 15, 2016 35

Lost lepton background

- Lost lepton background dominated by 2^e tt, but also includes tW
 - Enters signal region when one lepton out of acceptance or not identified/isolated
- Normalize the estimate to a dilepton control region in data
 - Require extra e/ μ (p_T>10 GeV)
 - Only extrapolate along the lost lepton category
 - Large statistical uncertainties, small systematic uncertainties

$$N_{lost \ \ell}^{Data, \ SR} = N_{\ell\ell}^{Data, \ CR}$$

$$\times \frac{M_{lost \ \ell}^{MC, \ SR}}{M_{\ell \ell}^{MC, \ CR}}$$

Pieter Everaerts

Searches for top squarks

Overview

- Looking for top squarks in the single-lepton final state
 - Baseline selection
 - Rejecting backgrounds
 - 1l backgrounds
 - 2I backgrounds
 - Rare Standard Model processes
 - Background prediction
 - Results and interpretation

No excess observed

Interpretation

Top squarks probed up to 870 GeV

Interpretation

Complementarity with all-jets analysis

- To believe a new-physics discovery we will also want to see multiple decay modes
 - Higgs boson discovery both in ZZ and $\gamma\gamma$

Breaking 1 TeV frontier!

 Make sure both analyses are fully disjoint, use same prescriptions for systematic uncertainties and statistical treatment

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Top mass corridor

- Most difficult area to target when $\Delta M = M_{\tilde{t}_1} M_{\chi_1^0} = M_t$
 - In rest frame of top squark
 - $E_{\tilde{t}_1}=M_{\tilde{t}_1}$ and $|\vec{p}_{\tilde{t}_1}|=0$
 - LSP also at rest: $E_{LSP}=M_{LSP}$ and $|\vec{p}_{LSP}|=0$
 - After Lorentz boost:
 - $p_{T,LSP} = -\gamma v E_{LSP} = -\gamma v M_{LSP}$
 - $p_{T,\tilde{t}_1} = -\gamma v E_{\tilde{t}_1} = -\gamma v M_{\tilde{t}_1}$
 - Combining this information:

•
$$p_{T,LSP} = \frac{M_{LSP}}{M_{\tilde{t}_1}} p_{T,\tilde{t}_1}$$

- 1. Boosting the top squarks will lead to large MET
- 2. For $M_{\rm LSP} \ll M_{{\widetilde t}_1}$ impossible to get high MET

Pieter Everaerts

Searches for top squarks

Top mass corridor

- Dedicated working group to focus on this region:
 - Study the sensitivity in more detail
 - Especially comparing LSP mass of 0 GeV with tt background
 - Signal modeling/simulation
 - Fast simulation had spurious high $p_{\rm T}$ jets and much worse MET resolution
- Still a few problems remaining:
 - Different MadGraph settings for background modeling
 - Strong dependence on polarization
- All these effects most sensitive for low LSP masses
- Conclusion:
 - New guidelines for FastSim usage
 - Light LSPs still needs further study

Pieter Everaerts

Searches for top squarks

Other ways to target the top corridor

- Cascade decays
 - Gluinos or heavier stop partners

- Indirect search
 - Excess in tt cross section measurement
 - Measurement of spin correlations between the tops (e.g. $\Delta\phi(I,I)$) since top squarks have spin 0

Pieter Everaerts

Searches for top squarks

- Why would we look for top squarks?
- How would top squarks decay and how can we detect them?
- Looking for top squarks in the single-lepton final state
- Peek at difficult mass spectra
- Conclusions and outlook

Possible improvements

- Search regions for decays with intermediate chargino
 - More energetic b jets
 - » Use b jet p_T, M(l,b), N_b=2 category,...
- Compressed mass splittings:
 - Ask for ISR jet activity
 - Use soft leptons
- Better lost lepton background selection:
 - Start from modified topness
 - » Include detector resolution
 - » Use MET covariance matrix
 - » Softer jets

Pieter Everaerts

Searches for top squarks

Possible improvements

- Identifying hadronic top decays
 - Both boosted and resolved top quark decays
 - » Low p_T top tagging the most important!
 - Also crucial for all-hadronic top squark search

- Improve background prediction
 - Rare backgrounds
 - Current data-driven methods dominated by statistical uncertainties:
 - » Can we replace some by (smaller) systematic uncertainties?

```
Pieter Everaerts
```

Searches for top squarks

Conclusions

- Light top squarks provide a clean solution for the hierarchy problem
 - And connects nicely to dark matter searches
- With 12.9 fb⁻¹ CMS puts stringent limits on top squark masses
 - Start probing 1 TeV mass top squarks
 - Full dataset 3 times larger
- Took a first look at possible improvements

Any questions?

Pieter Everaerts

Searches for top squarks

Back-up

Pieter Everaerts

Searches for top squarks

Other models

Pieter Everaerts

Searches for top squarks