
Distributed Computing 
Framework 

A.Tsaregorodtsev, 
CPPM-IN2P3-CNRS, Marseille, 

Plekhanov University of Economics, Moscow 
NorduGRID’17, 28 June 2017, Tromsø 

 

 



Plan 

2 

}  DIRAC Project overview 

}  Computing and Storage resources 

}  Users 

}  Services 

}  Development framework 

}  Conclusions 



Interware 
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}  DIRAC provides all the necessary components to 
build ad-hoc grid infrastructures interconnecting 
computing resources of different types, allowing 
interoperability and simplifying interfaces.  This 
allows to speak about the DIRAC interware.   

 

 



Job scheduling 
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}  Pilot jobs are submitted to computing 
resources by specialized Pilot Directors 

}  After the start, Pilots check the 
execution environment and 
form the resource description 
}  OS, capacity, disk space, software, etc 

}  The resources description is presented to the 
Matcher service, which chooses the most 
appropriate user job from the Task Queue 

}  The user job description is delivered to the 
pilot, which prepares its execution 
environment and executes the user 
application 

}  In the end, the pilot is uploading the results 
and output data to a predefined destination  

 



Computing Resources 
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}  DIRAC was initially developed with the focus on 
accessing conventional Grid computing resources 
}  WLCG grid resources for the LHCb Collaboration 
}  It fully supports multiple grid middlewares and infrastructures 

}  EGI, WLCG, OSG, NorduGRID, etc 
}  Other types of grids can be supported 

}  As long we have customers needing that 

}  Standalone clusters 
}  Access through SSH/GSISSH tunnel 
}  Batch systems supported: LSF, BQS, SGE, PBS/Torque, 

Condor, OAR, SLURM
}  Used to access HPC centers

}  BOINC Volunteer resources 
}  Running pilots on volunteer machines 
}  Separation of secure and unsecure parts, plugins for results validation 



ARC Computing Element 
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}  Access to ARC CE services via a corresponding 
ComputingElement plugin 
}  Using arc python binding 

}  Job submission, getting results, killing 
}  Using BDII (ldap) commands to discover job and CE statuses 

}  Frequent problems with BDII look-up 
}  Can not retrieve the CE occupancy, especially with respect to a 

particular community 
}  Alternatively, using PilotAgentsDB of DIRAC to evaluate the 

load on a given ARC CE 
}  Considering using the ARC REST interface 

}  Avoid arc python binding dependency 



VMDIRAC extension 
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}  VMDIRAC extension 
developed for Belle MC 
production system
}  Dynamic VM spawning taking 

Amazon EC2 spot prices and 
Task Queue state into account

}  Now VMDIRAC is a general 
purpose service for VMs life 
cycle management
}  Creation
}  Monitoring
}  Discarding 



VM submission 
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}  Cloud endpoint plugins to interact with particular 
cloud provides 

}  Cloud endpoint abstraction 
}  Implementations ( IHEP, Beijing ) 

}  Apache-libcloud 
¨  Catch-all library, but not really… 

}  Rocci 
¨  Using command line interface 
¨  Allow connections with GSI proxies 

}  EC2 
¨  Boto python API  

}  More implementations are in the works 
}  OCCI, Google,  Azur, IBM, … 
}  Preferring RESTful interfaces 



VM submission 
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}  CloudDirector – VMDIRAC way 
}  Similar to SiteDirector for grid jobs submission 
}  VM submission based on the Task Queue status 

}  If there are waiting user payloads 
}  VM properties corresponding to payload requirements 

}  Vac/Vcycle ( A. McNab ) 
}  Used by LHCb 
}  Spawning VMs without a priori knowledge about the state of the Task 

Queue  

}  Similar contextualization and pilots 
}  Separate development subproject to provide pilots running in 

DIRAC-free environments   



Pilots in the VMs 
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}  Same as any other pilots  
}  DIRAC Pilot 2.0 framework 

}  A set of commands for the DIRAC environment installation and setup, 
starting Job Agents interacting with the WMS central service 

}  User communities can provide custom pilot commands in addition and/or 
in replacement of the standard omes 

}  Managing the VM CPU cores scenarios 
}  Launching as many pilots as they are cores 

}  Suitable for single-core payloads, à la grid jobs  
}  Launching single pilot 

}  Suitable for multi-core payloads occupying the whole VM 
}  Single pilot with a PoolComputingElement plugin for payloads 

execution 
}  Simple “batch system” to manage VM job slots 
}  Can execute payloads with any requirements to the number of cores: 

single, exact number of cores or whole node occupancy 



Managing VM life cycle 
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}  VM Monitor Agent is launched in parallel with the pilot process during 
the VM bootstrapping  
}  This is a watchdog for activities on the VM 
}  Sends heartbeats and VM status information to the central VM Manager 

service 
}  Can receive instructions from the central service as a response to the 

heartbeat  
¨  E.g., halt, drain and other commands  

}  Monitors the VM status 
}  Can be configured to halt the VM with different policies 

}  VM Scheduler orchestrates spawning and halting virtual machines 
depending on the Task Queue status, Accounting history 
}  Necessary for fair sharing of cloud resources 
}  Work in progress 



VM management 
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Transformation System 
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}  Data driven workflows as chains of data transformations 
}  Transformation: input data filter + recipe to create tasks  
}  Tasks are created as soon as data with required properties is registered 

into the system 
}  Tasks: jobs, data operations,  

etc 

}  Transformations can be 
used for automatic data 
driven bulk data  
operations 
}  Scheduling RMS tasks 
}  Often as part of a more 

general workflow 



Storage plugins 
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}  Storage element abstraction with a client 
implementation for each access protocol  
}  DIPS, SRM, XROOTD, RFIO, etc  
}  gfal2 based plugin gives access to all 

protocols supported by the library 
}  HTTP, DCAP,  WebDAV, S3, … 

}  Each SE is seen by the clients as a  
logical entity 
}  With some specific operational properties 
}  SE’s can be configured with multiple protocols 



File Catalog 
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}  Central File Catalog ( DFC, LFC, … ) is 
maintaining a single global logical name 
space 

}  Several catalogs can be used together 
}  The mechanism is used to send 

messages to “pseudocatalog”  
services, e.g. 
}  Transformation service (see later) 
}  Bookkeeping service of LHCb 

}  A user sees it as a single catalog 
with additional features 

}  DataManager is a single 
client interface for logical 
data operations 



Bulk transfers 
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}  Replication/Removal Requests 
with multiple files are stored in 
the RMS 
}  By users, data managers, 

Transformation System 
}  The Replication Operation 

executor 
}  Performs the replication itself or 
}  Delegates replication to an external 

service 
}  E.g. FTS 

}  A dedicated FTSManager service 
keeps track of the submitted FTS 
requests 

}  FTSMonitor Agent monitors the 
request progress, updates the 
FileCatalog with the new replicas 



Web Portal examples 
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Distributed Computer 
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}  DIRAC is aiming at providing an abstraction of a 
single computer for massive computational and 
data operations from the user perspective 
}  Logical Computing and Storage elements (Hardware ) 
}  Global logical name space ( File System ) 
}  Desktop-like GUI 



LHCb Collaboration        
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}  More than 100K concurrent jobs in ~120 distinct sites
}  Equivalent to running a virtual computing center with a power of 

100K CPU cores
}  Further optimizations to increase the capacity are possible
●  Hardware, database optimizations, service load balancing, etc



DIRAC services 
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}  Dedicated installations 
}  LHCb, Belle II, CTA 

}  Multi-community services 
}  CERN: ILC, CALICE 
}  IHEP: BES III, Juno, CEPC 
}  FG-DIRAC 
}  GridPP 
}  DIRAC4EGI 

}  New services 
}  PNNL: Belle II, Project8, MiniCLEAN, SuperCDMS, nEXO 
}  DIRAC@JINR: NICA, Dubna University  

}  Several DIRAC evaluations are ongoing 
}  Auger, ELI, … 

 



DIRAC4EGI service 
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}  In production since 2014 
}  Partners 

}  Operated by EGI 
}  Hosted by CYFRONET 
}  DIRAC Project providing software, 

consultancy 
}  10 Virtual Organizations 

}  enmr.eu, vlemed, eiscat.se 
}  fedcloud.egi.eu 
}  training.egi.eu 

}  Usage 
}  > 6 million jobs processed in  

the last year 
}  Data Management solution 

}  Eiscat 3D 

}  Starting from 2018 DIRAC 
becomes Core Service of EGI 
}  WMS replacement 
}  Serving both Grid and FedCloud resources 
}  Part of H’2020 EINFRA-12 proposal 

DIRAC4EGI activity snapshot 
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}  5 out of Top-10 EGI communities used heavily DIRAC for 
their payload management in the last year 
}  4 out of 6 top communities excluding LHC experiments 

}  belle, biomed, ilc, vo.cta.in2p3.fr  
}  compchem will likely join the club 



DIRAC Software Framework 
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Software Framework 
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¿  DIRAC software architecture is based on well defined 
components with clear recipes for developing   
ö Services 

}  passive components reacting to client request  
}  Keep their state in a database 

ö Agents 
}   Light permanently running distributed components, animating the whole system  

ö Clients 
}  Used in user interfaces as well as in agent-service, service-service communications 

¿  All the communications between the distributed components 
are secure
}  DISET custom client/service protocol

}  Focus on efficiency
}  Control and data transfer communications

}  X509, GSI security standards



Software Framework 
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¿ The framework allows to easily build DIRAC components 
concentrating on the business logic of the applications 
¿  Starting from basic skeletons
¿  Development environment: Python

¿ Several non-core Python modules are used, e.g. M2Crypto, 
SQLAlchemy

¿ Third party dependencies
¿  MySQL

¿ Replacement by MariaDB is being tested
¿  ElasticSearch DB 

¿ Activities monitoring, accounting
¿  Message Queues ( abstraction layer with RabbitMQ 

implementation )
¿ Alternative inter-component protocol
¿ Centralized logging



DIRAC base services
}  Redundant Configuration  

Service
}  Provides service discovery and  

setup parameters for all the  
DIRAC components

}  Full featured proxy  
management system
}  Proxy storage and renewal  

mechanism
}  System Logging service

}  Collect essential error messages from all the components
}  Monitoring service

}  Monitor the service and agents behavior 
}  Security Logging service

}  Keep traces of all the service access events
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Accounting 
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}  Comprehensive accounting of all the operations 
 

}  Publication ready quality of the plots 
}  Plotting service can be used by users for there own data 



Customizing DIRAC 
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¿ DIRAC Extensions
¿ Specific functionality can be provided as custom 

components and plugin modules, e.g.
¿ Data access policies
¿ Job scheduling policies

¿ Standard rules for packaging specific components
¿ Using standard release and deployment tools
¿ Autodiscoverring custom components at run time

¿  Possibility to override behavior of core components
¿ Multiple extensions are created

¿ LHCb, Belle, ILC, BES, CTA, Eiscat, …



Contributing new code 
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}  DIRAC software repository in the Github service 
}  https://github.com/DIRACGrid 

}  Multiple means for efficient collaborative development 
}  Strict branching model 
}  Review process for each new contribution 
}  Automated testing with  

}  Multiple unit tests ( Travis CI ) 
}  Continuous integration ( Jenkins ) 

}  Automated coding conventions and coverage 
evaluation 

}  Automated documentation builds for each new release  
}  Regular releases 

}  Weekly patch releases 
}  3-4 major releases per year 



Conclusions 
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}  DIRAC provides a framework for building distributed 
computing systems aggregating multiple types of computing 
and storage resources  

}  Multiple large HEP and astrophysics collaborations adopted 
DIRAC for their production systems. Multiple evaluations are 
ongoing 

}  Multiple multi-community DIRAC services are provided by 
large grid infrastructures. DIRAC becomes an EGI core 
service replacing gLite WMS starting from 2018. 

}  DIRAC software framework facilitates development of 
extensions to its functionality, some of which are accepted 
into the core code base 

 http://diracgrid.org 


