
Distributed Computing
Framework

A.Tsaregorodtsev,
CPPM-IN2P3-CNRS, Marseille,

Plekhanov University of Economics, Moscow
NorduGRID’17, 28 June 2017, Tromsø

Plan

2

}  DIRAC Project overview

}  Computing and Storage resources

}  Users

}  Services

}  Development framework

}  Conclusions

Interware

3

}  DIRAC provides all the necessary components to
build ad-hoc grid infrastructures interconnecting
computing resources of different types, allowing
interoperability and simplifying interfaces. This
allows to speak about the DIRAC interware.

Job scheduling

4

}  Pilot jobs are submitted to computing
resources by specialized Pilot Directors

}  After the start, Pilots check the
execution environment and
form the resource description
}  OS, capacity, disk space, software, etc

}  The resources description is presented to the
Matcher service, which chooses the most
appropriate user job from the Task Queue

}  The user job description is delivered to the
pilot, which prepares its execution
environment and executes the user
application

}  In the end, the pilot is uploading the results
and output data to a predefined destination

Computing Resources

5

}  DIRAC was initially developed with the focus on
accessing conventional Grid computing resources
}  WLCG grid resources for the LHCb Collaboration
}  It fully supports multiple grid middlewares and infrastructures

}  EGI, WLCG, OSG, NorduGRID, etc
}  Other types of grids can be supported

}  As long we have customers needing that

}  Standalone clusters
}  Access through SSH/GSISSH tunnel
}  Batch systems supported: LSF, BQS, SGE, PBS/Torque,

Condor, OAR, SLURM
}  Used to access HPC centers

}  BOINC Volunteer resources
}  Running pilots on volunteer machines
}  Separation of secure and unsecure parts, plugins for results validation

ARC Computing Element

6

}  Access to ARC CE services via a corresponding
ComputingElement plugin
}  Using arc python binding

}  Job submission, getting results, killing
}  Using BDII (ldap) commands to discover job and CE statuses

}  Frequent problems with BDII look-up
}  Can not retrieve the CE occupancy, especially with respect to a

particular community
}  Alternatively, using PilotAgentsDB of DIRAC to evaluate the

load on a given ARC CE
}  Considering using the ARC REST interface

}  Avoid arc python binding dependency

VMDIRAC extension

7

}  VMDIRAC extension
developed for Belle MC
production system
}  Dynamic VM spawning taking

Amazon EC2 spot prices and
Task Queue state into account

}  Now VMDIRAC is a general
purpose service for VMs life
cycle management
}  Creation
}  Monitoring
}  Discarding

VM submission

8

}  Cloud endpoint plugins to interact with particular
cloud provides

}  Cloud endpoint abstraction
}  Implementations (IHEP, Beijing)

}  Apache-libcloud
¨  Catch-all library, but not really…

}  Rocci
¨  Using command line interface
¨  Allow connections with GSI proxies

}  EC2
¨  Boto python API

}  More implementations are in the works
}  OCCI, Google, Azur, IBM, …
}  Preferring RESTful interfaces

VM submission

9

}  CloudDirector – VMDIRAC way
}  Similar to SiteDirector for grid jobs submission
}  VM submission based on the Task Queue status

}  If there are waiting user payloads
}  VM properties corresponding to payload requirements

}  Vac/Vcycle (A. McNab)
}  Used by LHCb
}  Spawning VMs without a priori knowledge about the state of the Task

Queue

}  Similar contextualization and pilots
}  Separate development subproject to provide pilots running in

DIRAC-free environments

Pilots in the VMs

10

}  Same as any other pilots
}  DIRAC Pilot 2.0 framework

}  A set of commands for the DIRAC environment installation and setup,
starting Job Agents interacting with the WMS central service

}  User communities can provide custom pilot commands in addition and/or
in replacement of the standard omes

}  Managing the VM CPU cores scenarios
}  Launching as many pilots as they are cores

}  Suitable for single-core payloads, à la grid jobs
}  Launching single pilot

}  Suitable for multi-core payloads occupying the whole VM
}  Single pilot with a PoolComputingElement plugin for payloads

execution
}  Simple “batch system” to manage VM job slots
}  Can execute payloads with any requirements to the number of cores:

single, exact number of cores or whole node occupancy

Managing VM life cycle

11

}  VM Monitor Agent is launched in parallel with the pilot process during
the VM bootstrapping
}  This is a watchdog for activities on the VM
}  Sends heartbeats and VM status information to the central VM Manager

service
}  Can receive instructions from the central service as a response to the

heartbeat
¨  E.g., halt, drain and other commands

}  Monitors the VM status
}  Can be configured to halt the VM with different policies

}  VM Scheduler orchestrates spawning and halting virtual machines
depending on the Task Queue status, Accounting history
}  Necessary for fair sharing of cloud resources
}  Work in progress

VM management

12

Pilot

Logs

VM
Monitor

VM

VM Manager
Service

VM Scheduler

WMS
Services

Heartbeats
State updates Commands

Accounting
Service

Transformation System

13

}  Data driven workflows as chains of data transformations
}  Transformation: input data filter + recipe to create tasks
}  Tasks are created as soon as data with required properties is registered

into the system
}  Tasks: jobs, data operations,

etc

}  Transformations can be
used for automatic data
driven bulk data
operations
}  Scheduling RMS tasks
}  Often as part of a more

general workflow

Storage plugins

14

}  Storage element abstraction with a client
implementation for each access protocol
}  DIPS, SRM, XROOTD, RFIO, etc
}  gfal2 based plugin gives access to all

protocols supported by the library
}  HTTP, DCAP, WebDAV, S3, …

}  Each SE is seen by the clients as a
logical entity
}  With some specific operational properties
}  SE’s can be configured with multiple protocols

File Catalog

15

}  Central File Catalog (DFC, LFC, …) is
maintaining a single global logical name
space

}  Several catalogs can be used together
}  The mechanism is used to send

messages to “pseudocatalog”
services, e.g.
}  Transformation service (see later)
}  Bookkeeping service of LHCb

}  A user sees it as a single catalog
with additional features

}  DataManager is a single
client interface for logical
data operations

Bulk transfers

16

}  Replication/Removal Requests
with multiple files are stored in
the RMS
}  By users, data managers,

Transformation System
}  The Replication Operation

executor
}  Performs the replication itself or
}  Delegates replication to an external

service
}  E.g. FTS

}  A dedicated FTSManager service
keeps track of the submitted FTS
requests

}  FTSMonitor Agent monitors the
request progress, updates the
FileCatalog with the new replicas

Web Portal examples

17

Distributed Computer

18

}  DIRAC is aiming at providing an abstraction of a
single computer for massive computational and
data operations from the user perspective
}  Logical Computing and Storage elements (Hardware)
}  Global logical name space (File System)
}  Desktop-like GUI

LHCb Collaboration

19

}  More than 100K concurrent jobs in ~120 distinct sites
}  Equivalent to running a virtual computing center with a power of

100K CPU cores
}  Further optimizations to increase the capacity are possible
●  Hardware, database optimizations, service load balancing, etc

DIRAC services

20

}  Dedicated installations
}  LHCb, Belle II, CTA

}  Multi-community services
}  CERN: ILC, CALICE
}  IHEP: BES III, Juno, CEPC
}  FG-DIRAC
}  GridPP
}  DIRAC4EGI

}  New services
}  PNNL: Belle II, Project8, MiniCLEAN, SuperCDMS, nEXO
}  DIRAC@JINR: NICA, Dubna University

}  Several DIRAC evaluations are ongoing
}  Auger, ELI, …

DIRAC4EGI service

21

}  In production since 2014
}  Partners

}  Operated by EGI
}  Hosted by CYFRONET
}  DIRAC Project providing software,

consultancy
}  10 Virtual Organizations

}  enmr.eu, vlemed, eiscat.se
}  fedcloud.egi.eu
}  training.egi.eu

}  Usage
}  > 6 million jobs processed in

the last year
}  Data Management solution

}  Eiscat 3D

}  Starting from 2018 DIRAC
becomes Core Service of EGI
}  WMS replacement
}  Serving both Grid and FedCloud resources
}  Part of H’2020 EINFRA-12 proposal

DIRAC4EGI activity snapshot

22

}  5 out of Top-10 EGI communities used heavily DIRAC for
their payload management in the last year
}  4 out of 6 top communities excluding LHC experiments

}  belle, biomed, ilc, vo.cta.in2p3.fr
}  compchem will likely join the club

DIRAC Software Framework

23

Software Framework

24

¿  DIRAC software architecture is based on well defined
components with clear recipes for developing
ö Services

}  passive components reacting to client request
}  Keep their state in a database

ö Agents
}  Light permanently running distributed components, animating the whole system

ö Clients
}  Used in user interfaces as well as in agent-service, service-service communications

¿  All the communications between the distributed components
are secure
}  DISET custom client/service protocol

}  Focus on efficiency
}  Control and data transfer communications

}  X509, GSI security standards

Software Framework

25

¿ The framework allows to easily build DIRAC components
concentrating on the business logic of the applications
¿  Starting from basic skeletons
¿  Development environment: Python

¿ Several non-core Python modules are used, e.g. M2Crypto,
SQLAlchemy

¿ Third party dependencies
¿  MySQL

¿ Replacement by MariaDB is being tested
¿  ElasticSearch DB

¿ Activities monitoring, accounting
¿  Message Queues (abstraction layer with RabbitMQ

implementation)
¿ Alternative inter-component protocol
¿ Centralized logging

DIRAC base services
}  Redundant Configuration  

Service
}  Provides service discovery and  

setup parameters for all the  
DIRAC components

}  Full featured proxy  
management system
}  Proxy storage and renewal  

mechanism
}  System Logging service

}  Collect essential error messages from all the components
}  Monitoring service

}  Monitor the service and agents behavior
}  Security Logging service

}  Keep traces of all the service access events

Slave
server

Slave
server

Master
server

Configuration Service
Config DB

Client Client Client

getUpdate

Configuration
manager

setOption

getUpdate

getOption getOptiongetOption

Slave
server

Slave
server

Master
server

Configuration Service
Config DB

Client Client Client

getUpdate

Configuration
manager

setOption

getUpdate

getOption getOptiongetOption

26

Accounting

27

}  Comprehensive accounting of all the operations

}  Publication ready quality of the plots
}  Plotting service can be used by users for there own data

Customizing DIRAC

28

¿ DIRAC Extensions
¿ Specific functionality can be provided as custom

components and plugin modules, e.g.
¿ Data access policies
¿ Job scheduling policies

¿ Standard rules for packaging specific components
¿ Using standard release and deployment tools
¿ Autodiscoverring custom components at run time

¿  Possibility to override behavior of core components
¿ Multiple extensions are created

¿ LHCb, Belle, ILC, BES, CTA, Eiscat, …

Contributing new code

29

}  DIRAC software repository in the Github service
}  https://github.com/DIRACGrid

}  Multiple means for efficient collaborative development
}  Strict branching model
}  Review process for each new contribution
}  Automated testing with

}  Multiple unit tests (Travis CI)
}  Continuous integration (Jenkins)

}  Automated coding conventions and coverage
evaluation

}  Automated documentation builds for each new release
}  Regular releases

}  Weekly patch releases
}  3-4 major releases per year

Conclusions

30

}  DIRAC provides a framework for building distributed
computing systems aggregating multiple types of computing
and storage resources

}  Multiple large HEP and astrophysics collaborations adopted
DIRAC for their production systems. Multiple evaluations are
ongoing

}  Multiple multi-community DIRAC services are provided by
large grid infrastructures. DIRAC becomes an EGI core
service replacing gLite WMS starting from 2018.

}  DIRAC software framework facilitates development of
extensions to its functionality, some of which are accepted
into the core code base

 http://diracgrid.org

