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What is machine learning? 2

Hyperbole

Deep Learning

Machine learningMultivariate 
methods

Computational statistical inference

Artificial intelligence



Artificial Intelligence

Machine learning

uses statistical inference to extract generalities from “training” 
data 
→ “learns” from the training data 
→ when exposed to new data, demonstrates behaviours that 
have not been explicitly programmed



Artificial Intelligence

Machine learning

requires 
✓ lots of computing power 
✓ lots of training data
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This talk

• Where might machine learning have a role in 
distributed computing?

‣ …and where might it not

• Optimising use of resources

• Anomaly detection

• Power efficiency and security
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Main messages

•Machine learning is only useful if there is a sufficient 
quantity of appropriate training data

‣ Rubbish in = rubbish out

•More complicated models do not guarantee better 
performance

•We should always ask ourselves

‣ Can the problem be solved with a simple procedural 
algorithm rather than a complex ML method?

‣ Do we have a large enough set of relevant training data?

‣ Is the chosen model best suited to the problem?
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Supervised learning



Unsupervised learning



Reinforcement learning





Training data 12
Fortunately we have plenty of historical data from distributed
computing operations… jobs, data movement, sites, etc etc



SecurityAnomaly detection

Optimising use of 
computing resources

Optimising power 
utilisation efficiency



Optimising use of resources 
• M. Lassnig et al @ CHEP2016, contribution 131

‣ Using machine learning algorithms to forecast network and system load metrics for 
ATLAS Distributed Computing

‣ https://indico.cern.ch/event/505613/contributions/2227924/attachments/
1346952/2031409/Oral-131.pdf
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Optimising use of resources: DDM example
• M. Lassnig et al @ CHEP2016, contribution 131

• Basic idea: 

‣ ATLAS distributed data management system involves a 
heterogeneous infrastructure with a highly dynamic state

‣ Human interaction is important - “signing off” decisions and tasks; 
algorithms and their parameters tuned based on experience

‣ Potential for improvement

• Data rebalancing: disk space doesn't match CPU

• Placement selection: where to put data?

• Source selection: where to run jobs if multiple input copies 
available?

• Robustness: automatically reschedule tasks/transfers
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Storage optimisation for LHCb 22

Mikhail Hushchyn, CHEP 2016,
https://indico.cern.ch/event/505613/

contributions/2230916/
attachments/1347081/2044978/

Oral-295-v2.pdf

Long-term prediction

11

The model is compared with Least Recently 
Used (LRU) algorithm.

Based on the classifier output, our model 
allows to remove more files from the disks 
correctly than LRU with the same number of 
mistakes.

https://indico.cern.ch/event/505613/contributions/2230916/attachments/1347081/2044978/Oral-295-v2.pdf
https://indico.cern.ch/event/505613/contributions/2230916/attachments/1347081/2044978/Oral-295-v2.pdf
https://indico.cern.ch/event/505613/contributions/2230916/attachments/1347081/2044978/Oral-295-v2.pdf
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Optimising use of resources:  next steps 

• Use predictions of regression algorithms to optimise data 
placement?

‣ incrementally, adding as a weight to existing placement 
algorithms?

• Another idea: can we extend to job placement?

‣ Are there sufficient metrics available to be able to make 
useful predictions?

‣ More important in a cloud computing environment?

• Costs of CPU/network/storage become metrics…

• ATLAS qualification task for Simen Hellesund (UiO)

• Key component of the “Archestrate” application

23
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What is anomaly detection?
• Automatic identification of data instances (events) that are in some way 

different from the bulk of the data and which need detailed scrutiny by experts. 
Usually implied:

‣ produced by a different mechanism than the bulk of the events

‣ small number of anomalies w.r.t. the main part of the data

• Can be

‣ supervised: train to recognise specific anomalous cases

‣ semi-supervised: train only on the bulk of the data without anomalies → 
strong relation to one-class classification

‣ unsupervised: algorithm automatically identifies the bulk by some means and 
thence the anomalies

• Difficult problem because in general we don’t know what the anomalies look 
like, and there may be very few of them

‣ Testing is particularly challenging: how do we evaluate the performance of an 
algorithm on a type of event that we have never seen before?

25
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Types of anomaly 26

POINT15:2 V. Chandola et al.

Fig. 1. A simple example of anomalies in a two-dimensional data set.

contaminants in different application domains. Of these, anomalies and outliers are
two terms used most commonly in the context of anomaly detection; sometimes inter-
changeably. Anomaly detection finds extensive use in a wide variety of applications
such as fraud detection for credit cards, insurance, or health care, intrusion detection
for cyber-security, fault detection in safety critical systems, and military surveillance
for enemy activities.

The importance of anomaly detection is due to the fact that anomalies in data trans-
late to significant, and often critical, actionable information in a wide variety of appli-
cation domains. For example, an anomalous traffic pattern in a computer network could
mean that a hacked computer is sending out sensitive data to an unauthorized destina-
tion [Kumar 2005]. An anomalous MRI image may indicate the presence of malignant
tumors [Spence et al. 2001]. Anomalies in credit card transaction data could indicate
credit card or identity theft [Aleskerov et al. 1997], or anomalous readings from a space
craft sensor could signify a fault in some component of the space craft [Fujimaki et al.
2005].

Detecting outliers or anomalies in data has been studied in the statistics community
as early as the 19th century [Edgeworth 1887]. Over time, a variety of anomaly detection
techniques have been developed in several research communities. Many of these tech-
niques have been specifically developed for certain application domains, while others
are more generic.

This survey tries to provide a structured and comprehensive overview of the research
on anomaly detection. We hope that it facilitates a better understanding of the different
directions in which research has been done on this topic, and how techniques developed
in one area can be applied in domains for which they were not intended to begin with.

1.1. What are Anomalies?

Anomalies are patterns in data that do not conform to a well defined notion of normal
behavior. Figure 1 illustrates anomalies in a simple two-dimensional data set. The data
has two normal regions, N1 and N2, since most observations lie in these two regions.
Points that are sufficiently far away from these regions, for example, points o1 and o2,
and points in region O3, are anomalies.

Anomalies might be induced in the data for a variety of reasons, such as malicious
activity, for example, credit card fraud, cyber-intrusion, terrorist activity or break-
down of a system, but all of the reasons have the common characteristic that they are

ACM Computing Surveys, Vol. 41, No. 3, Article 15, Publication date: July 2009.

CONTEXTUAL15:8 V. Chandola et al.

Fig. 3. Contextual anomaly t2 in a temperature time-series. Note that the temperature at time t1 is same
as that at time t2 but occurs in a different context and hence is not considered as an anomaly.

of 35◦F might be normal during the winter (at time t1) at that place, but the same value
during the summer (at time t2) would be an anomaly.

A similar example can be found in the credit card fraud detection domain. A con-
textual attribute in the credit card domain can be the time of purchase. Suppose an
individual usually has a weekly shopping bill of $100 except during the Christmas
week, when it reaches $1000. A new purchase of $1000 in a week in July will be con-
sidered a contextual anomaly, since it does not conform to the normal behavior of the
individual in the context of time even though the same amount spent during Christmas
week will be considered normal.

The choice of applying a contextual anomaly detection technique is determined by the
meaningfulness of the contextual anomalies in the target application domain. Another
key factor is the availability of contextual attributes. In several cases defining a context
is straightforward, and hence applying a contextual anomaly detection technique makes
sense. In other cases, defining a context is not easy, making it difficult to apply such
techniques.

2.2.3. Collective Anomalies. If a collection of related data instances is anomalous with
respect to the entire data set, it is termed a collective anomaly. The individual data
instances in a collective anomaly may not be anomalies by themselves, but their occur-
rence together as a collection is anomalous. Figure 4 is an example that shows a human
electrocardiogram output [Goldberger et al. 2000]. The highlighted region denotes an
anomaly because the same low value exists for an abnormally long time (correspond-
ing to an Atrial Premature Contraction). Note that that low value by itself is not an
anomaly.

As an another illustrative example, consider a sequence of actions occurring in a
computer as shown below:
. . . http-web, buffer-overflow, http-web, http-web, smtp-mail, ftp, http-web, ssh, smtp-mail,
http-web, ssh, buffer-overflow, ftp, http-web, ftp, smtp-mail,http-web . . .

The highlighted sequence of events (buffer-overflow, ssh, ftp) correspond to a typ-
ical Web-based attack by a remote machine followed by copying of data from the host
computer to a remote destination via ftp. It should be noted that this collection of events
is an anomaly, but the individual events are not anomalies when they occur in other
locations in the sequence.

ACM Computing Surveys, Vol. 41, No. 3, Article 15, Publication date: July 2009.

Anomaly Detection: A Survey 15:9

Fig. 4. Collective anomaly corresponding to an Atrial Premature Contraction in an human electrocardiogram
output.

Collective anomalies have been explored for sequence data [Forrest et al. 1999; Sun
et al. 2006], graph data [Noble and Cook 2003], and spatial data [Shekhar et al. 2001].

It should be noted that while point anomalies can occur in any data set, collective
anomalies can occur only in data sets in which data instances are related. In contrast,
occurrence of contextual anomalies depends on the availability of context attributes in
the data. A point anomaly or a collective anomaly can also be a contextual anomaly if
analyzed with respect to a context. Thus a point anomaly detection problem or collec-
tive anomaly detection problem can be transformed to a contextual anomaly detection
problem by incorporating the context information.

The techniques used for detecting collective anomalies are very different than the
point and contextual anomaly detection techniques, and require a separate detailed
discussion. Hence we chose to not cover them in this survey. For a brief review of the
research done in the field of collective anomaly detection, the reader is referred to an
extended version of this survey [Chandola et al. 2007].

2.3. Data Labels

The labels associated with a data instance denote whether that instance is normal or
anomalous.1 It should be noted that obtaining labeled data that is accurate as well
as representative of all types of behaviors, is often prohibitively expensive. Labeling
is often done manually by a human expert and hence substantial effort is required to
obtain the labeled training data set. Typically, getting a labeled set of anomalous data
instances that covers all possible type of anomalous behavior is more difficult than
getting labels for normal behavior. Moreover, the anomalous behavior is often dynamic
in nature, for example, new types of anomalies might arise, for which there is no labeled
training data. In certain cases, such as air traffic safety, anomalous instances would
translate to catastrophic events, and hence are very rare.

Based on the extent to which the labels are available, anomaly detection techniques
can operate in one of the following three modes:

1Also referred to as normal and anomalous classes.

ACM Computing Surveys, Vol. 41, No. 3, Article 15, Publication date: July 2009.

COLLECTIVE
(population-level)

Images: 
ACM Computing Surveys, 
Vol 41, No. 3, Article 15



Anomaly detection applications in Grid computing

• Detect abnormal performance and alert shifters

‣ Network

‣ Disk/tape activity

‣ Time to complete jobs

‣ Memory consumption, etc

‣ Intrusion detection

• Conversely, identify jobs/transfers/tasks which are causing 
error messages but are not anomalous and will 
probably go away

‣ Saves time of shifters

27



Anomaly detection: time series analysis 28

Envelope

Anomaly

Anomaly

• Wide variety of 
techniques 
including multi-
variate methods

• Range from very 
simple (moving 
averages, fits) to 
highly 
sophisticated 
(recurrent NNs)

• Determining the 
tolerance is a big 
part of this



Anomaly detection: split sample classifier
• Suitable for collective anomalies only

• Two samples: reference and subject

‣ We want to see if the subject is consistent 
with the reference

• Split both into two parts - training and 
testing

• Train a classifier (BDT, NN etc) to distinguish 
between the test and reference (e.g. as if they 
were “signal” and “background”)

• In the testing phase, see if the classifier 
makes any progress in separating the 
reference and subject

‣ If it does: there is something about the 
subject sample to distinguish it from the 
reference

‣ If it is supposed to be the same as the 
reference, clear evidence that something is 
wrong

29
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Train Test Train Test

Untrained 
classifier
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✓ AUC≈0.5
✕ AUC>0.5



Anomaly detection: split sample classifier

• Shape of the ROC curve 
may help to understand 
whether the problem is local 
or global 

• Inspection of the BDT/NN 
weights may allow us to 
work out which combination 
of variables are leading to 
the separation

30
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Anomaly detection: auto-encoder 31
• Auto-encoder: NN trained on its own input - suitable for collective or point anomalies

‣ Usually includes a bottle-neck to compress the features of the data (e.g. PCA)

• Normally used for dimension-reduction but proposed as a means of anomaly detection

• Idea: a trained replicator neural network should reconstruct new examples taken from the bulk 
(normal) data with low error, but when presented with an anomalous example, will reconstruct it 
with a high error since it contains qualities that have not previously been encoded

‣ Provides a natural measure of abnormality: the reconstruction error (difference between the 
input and the output)

‣ Reconstruction error per event = 

As mentioned in Section 1, the RNN is a variation on the usual regression
model. Normally, input vectors are mapped to desired output vectors in multi-
layer perceptron neural networks. For the RNN, however, the input vectors are
also used as the output vectors; the RNN attempts to reproduce the input pat-
terns in the output. During training, the weights of the RNN are adjusted to
minimise the mean square error (or mean reconstruction error) for all training
patterns. As a consequence, common patterns are more likely to be well repro-
duced by the trained RNN so that those patterns representing outliers will be less
well reproduced by a trained RNN and will have a higher reconstruction error.
The reconstruction error is used as the measure of outlyingness of a datum.

3.1 RNN

The RNN we use is a feed-forward multi-layer perceptron with three hidden
layers sandwiched between an input layer and an output layer. The function of
the RNN is to reproduce the input data pattern at the output layer with error
minimised through training. Both input and output layers have n units, corre-
sponding to the n features of the training data. The number of units in the three
hidden layers are chosen experimentally to minimise the average reconstruction
error across all training patterns. Heuristics for making this choice are discussed
later in this section. Figure 1 shows a schematic view of the fully connected
Replicator Neural Network. The output of unit i of layer k is calculated by the
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Fig. 1. A schematic view of a fully connected Replicator Neural Network.
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Anomaly detection: auto-encoder 32

Reference Subject

Train Test

Untrained 
auto encoder

Trained auto 
encoder

✓ AUC≈0.5
✕ AUC>0.5

“One class” classifier

Drawback: less 
discrimination power

Advantage: no need to 
train on subject data, fast 

evaluation



Anomaly detection: surface/density-based 33

• Abnormal cases 
likely to be 
separated in 
variable space 
from normal cases

• Form a boundary 
around the 
normal cases (one 
class SVM), 
abnormal cases 
beyond the 
boundary

• Need to worry 
about tolerances 
(and evaluation 
time)
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Power utilisation efficiency (PUE)

• Example: study by 
Google/DeepMind

• PUE = ratio of the total 
building energy usage to 
the IT energy usage

‣ Not easy to model due 
to high complexity of 
data centre cooling 
equipment and vast 
number of potential 
configurations, non-
linear relations 
between equipment 
and environmental 
conditions

35

 
Fig 1.  Historical PUE values at Google. 

 
The application of machine learning algorithms to existing monitoring data provides an opportunity to 
significantly improve DC operating efficiency. A typical largescale DC generates millions of data points 
across thousands of sensors every day, yet this data is rarely used for applications other than monitoring 
purposes. Advances in processing power and monitoring capabilities create a large opportunity for machine 
learning to guide best practice and improve DC efficiency. The objective of this paper is to demonstrate a 
datadriven approach for optimizing DC performance in the sub1.10 PUE era. 
 
 
2.  Methodology 

 
2.1  General Background 
Machine learning is wellsuited for the DC environment given the complexity of plant operations and the 
abundance of existing monitoring data. The modern largescale DC has a wide variety of mechanical and 
electrical equipment, along with their associated setpoints and control schemes. The interactions between 
these systems and various feedback loops make it difficult to accurately predict DC efficiency using 
traditional engineering formulas.  
 
For example, a simple change to the cold aisle temperature setpoint will produce load variations in the 
cooling infrastructure (chillers, cooling towers, heat exchangers, pumps, etc.), which in turn cause nonlinear 
changes in equipment efficiency. Ambient weather conditions and equipment controls will also impact the 
resulting DC efficiency. Using standard formulas for predictive modeling often produces large errors because 
they fail to capture such complex interdependencies. 
 
Furthermore, the sheer number of possible equipment combinations and their setpoint values makes it 
difficult to determine where the optimal efficiency lies. In a live DC, it is possible to meet the target setpoints 
through many possible combinations of hardware (mechanical and electrical equipment) and software 
(control strategies and setpoints). Testing each and every feature combination to maximize efficiency would 
be unfeasible given time constraints, frequent fluctuations in the IT load and weather conditions, as well as 
the need to maintain a stable DC environment. 
 

2 

Plateau



Power utilisation efficiency (PUE)

• Use an ensemble of deep 
neural networks to learn 
the PUE w.r.t. historically 
measured data, for a large 
number of parameters

• Use the trained networks 
to predict PUE under a 
range of conditions

‣ enabling optimisation of 
the data centre to 
minimise PUE 

• Remark: similar task to the 
Grid performance 
optimisation work…?

36

 
 
 
The neural network features are listed as follows:  
1. Total server IT load [kW] 
2. Total Campus Core Network Room (CCNR) IT load [kW] 
3. Total number of process water pumps (PWP) running 
4. Mean PWP variable frequency drive (VFD) speed [%] 
5. Total number of condenser water pumps (CWP) running 
6. Mean CWP variable frequency drive (VFD) speed [%] 
7. Total number of cooling towers running 
8. Mean cooling tower leaving water temperature (LWT) setpoint [F] 
9. Total number of chillers running 
10. Total number of drycoolers running 
11. Total number of chilled water injection pumps running 
12. Mean chilled water injection pump setpoint temperature [F] 
13. Mean heat exchanger approach temperature [F] 
14. Outside air wet bulb (WB) temperature [F] 
15. Outside air dry bulb (DB) temperature [F] 
16. Outside air enthalpy [kJ/kg] 
17. Outside air relative humidity (RH) [%] 
18. Outdoor wind speed [mph] 
19. Outdoor wind direction [deg] 
 
Note that many of the inputs representing totals and averages are actually metavariables derived  from 
individual sensor data. Data preprocessing such as file I/O, data filtration and calculating metavariables 
was conducted using Python2.7 in conjunction with the Scipy 0.12.0 and Numpy 1.7.0 modules. Matlab 
R2010a was used for model training and postprocessing. Open source alternatives offering similar 
functionality to Matlab R2010a include Octave as well as the Scipy/Numpy modules in Python. 
 
 
3.  Results and Discussion 

 

Having an accurate and robust PUE model offers many benefits for DC operators and owners. For example, 
the comparison of actual vs. predicted DC performance for any given set of conditions can be used for 
automatic performance alerting, realtime plant efficiency targets and troubleshooting.  
 
A robust efficiency model also enables DC operators to evaluate PUE sensitivity to DC operational 
parameters. For example, an internal analysis of PUE versus cold aisle temperature (CAT) conducted at a 
Google DC suggested a theoretical 0.005 reduction in PUE by increasing the cooling tower LWT and chilled 
water injection pump setpoints by 3F (see Section 3.3). This simulated PUE reduction was subsequently 
verified with experimental test results after normalizing for server IT load and wet bulb temperature. Such 
sensitivity analyses drive significant cost and carbon savings by locating and estimating the magnitude of 
opportunities for further PUE reductions. 
 
Finally, a comprehensive DC efficiency model enables operators to simulate the DC operating configurations 
without making physical changes. Currently, it’s very difficult for an operator to predict the effect of a plant 
configuration change on PUE prior to enacting the changes. This is due to the complexity of modern DCs, 
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and the interactions between multiple control systems. A machine learning approach leverages the plethora 
of existing sensor data to develop a mathematical model that understands the relationships between 
operational parameters and the holistic energy efficiency. This type of simulation allows operators to 
virtualize the DC for the purpose of identifying optimal plant configurations while reducing the uncertainty 
surrounding plant changes. 
 
3.1  Predictive Accuracy 
Figure 3 depicts a snapshot of predicted vs actual PUE values at one of Google’s DCs over one month 
during the summer.  
 

 
Fig. 3  Predicted vs actual PUE values at a major DC. 

 
The neural network detailed in this paper achieved a mean absolute error of 0.004 and standard deviation of 
0.005 on the test dataset. Note that the model error generally increases for PUE values greater than 1.14 
due to the scarcity of training data corresponding to those values. The model accuracy for those PUE 
ranges is expected to increase over time as Google collects additional data on its DC operations. 
 
3.2  Sensitivity Analysis 
The following graphs reveal the impact of individual operating parameters on the DC PUE. We isolate for the 
effects of specific variables by linearly varying one input at a time while holding all others constant. Such 
sensitivity analyses are used to evaluate the impact of setpoint changes and identify optimal setpoints. All 
test results have been verified empirically. 
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Intrusion detection

• ALICE example: https://arxiv.org/pdf/1704.06193.pdf

‣ Grids face complex security challenges

‣ Interesting targets for attackers seeking for huge 
computational resources, since users can execute 
arbitrary code in the worker nodes on the Grid 
sites 

‣ Even with unbreakable isolation (VMs, containers) 
the jobs themselves may still do considerable 
harm

• Benign users can often break things 
unintentionally

‣ Proposal from ALICE to monitor the jobs 
themselves using ML techniques

‣ Use job and system logs, system call sequence,  
other common monitoring data. 

‣ SVMs suggested as a reasonable algorithm choice

39

Table 1. Comparison of security provided on VM and Containers.

Virtual Machines Containers

More isolation layers The kernel is directly exposed
Big surface of attack Less mature technology
Alone, it does not solve the Grid requirements Reduced surface of attack

Attenuation of kernel exposition possible
Less time to update (kernel bugs)
Fine-grained control

• Use Seccomp-bpf to filter available system calls [11]. This type of technology is currently
being used in sanboxing methods for the Tor project, Firefox and Chrome browsers, and
others.

• Use LSM technologies like Appamor [12].

• Optionally use Grsecurity Linux kernel patch [13].

• Optionally we could still use containers over on top of Virtual Machines.

We plan to research on these topics to find out the best solution with the least performance
overhead.

4. Intrusion detection

Even if we assumed that our execution environment is perfectly safe and it is impossible to scape
the enforced isolation, there are many possible attacks that can a↵ect the Grid. It is necessary
yet to analyze the job behavior to determine when an attack on the system is occurring. If an
user job is misbehaving, the proposed framework should raise an alarm and perform predefined
actions, for instance dropping the malicious processes. To detect innovative attacks we will use a
Machine Learning algorithm. Figure 4 shows the desired implementation of the proposed system
regarding Intrusion Detection.

Figure 4. Proposed Intrusion Detection
in the worker nodes.

https://arxiv.org/pdf/1704.06193.pdf


Conclusions

• Machine learning could have a big impact on distributed computing

‣ Increasing efficiency of computing resources utilisation

‣ Detecting faults

‣ Detecting security violations

‣ Improvement energy efficiency

• How relevant this will be if we make more use of commercial clouds remains 
to be seen 

• Important to use it when it can help, and not to try to use it when it can’t 

• This is interesting work: potential to recruit students to work on these topics

‣ ML experience becoming essential for many computing-related jobs in 
industry

• Personal comment: computing is under-represented at HEP meetings on 
machine learning (IML, ATLAS ML forum…)
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Classification without machine learning 42
variable 1

variable 2

TUNED on Monte Carlo to 
maximize S/√B



Classification with machine learning 43
variable 1

variable 2

TRAINED on Monte Carlo to 
maximize S/√B

Boundary defined by (e.g.) 
BDT or NN score



Response operator curve (ROC) 44
Deep Networks

Results
Lo+hi = lo.

Conclude:
DN can find
    hi-level vars.

Hi-level vars
  do not have all info
  are unnecessary
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Interesting links

• Inter-experiment machine learning working group (IML)

‣ https://iml.web.cern.ch

‣ Meets regularly, all agendas public

‣ ML Activities of the four LHC experiments

• CERN OpenData

‣ http://opendata.cern.ch/?ln=en

• Last CHEP conference

‣ http://chep2016.org

45

https://iml.web.cern.ch
http://chep2016.org

