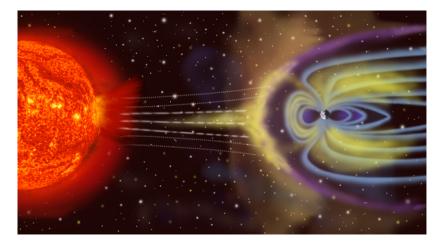


EISCAT_3D Nordic Computing Challenge

John White *NeIC* for the E3DS project.

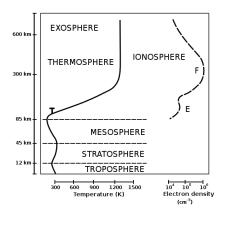
Norden THEC Nordice-Infrastructure NordForsk

Introduction


- Solar-terrestrial connection and EISCAT
- EISCAT_3D project
- EISCAT_3D Support Project (E3DS)
- EISCAT_3D Computing
- EISCAT_3D Network Plan
- EISCAT_3D Integrated Computing

🕗 norden

NordForsk


Nordic e-Infrastructure Collaboration

Solar wind and magnetosphere

Earth's Atmosphere

Wikimedia Commons

Atmosphere

• "E" region absorbs x-rays.

DEid

- "F" region absorbs UV.
- Aurora 90-200 km altitude.

Incoherent scatter radar

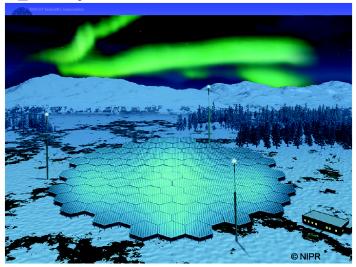
- Ionospheric electron density
- Ion and electron temperature
- Doppler velocity of ions

EISCAT

European (originally) Incoherent **SCAT**ter Scientific Association

Norden ILEIC Nordice-Infrastructure NordForsk

Current EISCAT radars

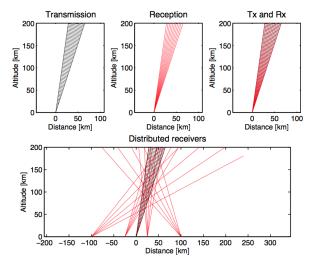


Wikimedia Commons

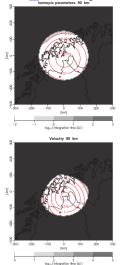
norden NordForsk

Nordic e-Infrastructure Collaboration

EISCAT_3D Project

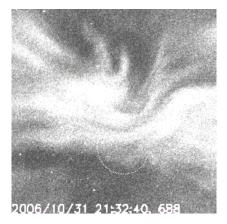


EISCAT_3D Project


Norden ILUE Collaboration

EISCAT_3D Project

NordForsk



Current EISCAT radars

Fine structure of aurora in real time

ASK 3×3 degrees 31 Oct 2006 Hanna Dahlgren, KTH

Nordic e-Infrastructure

EISCAT_3D Project

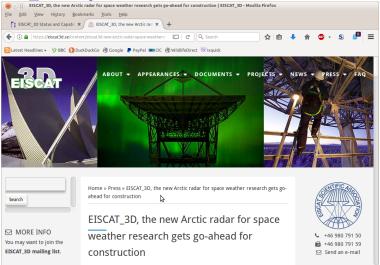
https://heinselslug.smugmug.com/Professional/EISCAT/ 2017-06-Ramfjordmoen/ NorduGrid 2017 Conference, Tromsø, Norway, June 29th 2017 11

EISCAT_3D Project

https://heinselslug.smugmug.com/Professional/EISCAT/ 2017-06-Ramfjordmoen/ NorduGrid 2017 Conference, Tromsø, Norway, June 29th 2017 12

Nordic e-Infrastructure Collaboration

NordForsk


EISCAT_3D Project

https://heinselslug.smugmug.com/Professional/EISCAT/ 2017-06-Ramfiordmoen/ NorduGrid 2017 Conference, Tromsø, Norway, June 29th 2017 13

Norden ILEIC Nordice-Infrastructure NordForsk

EISCAT_3D Project

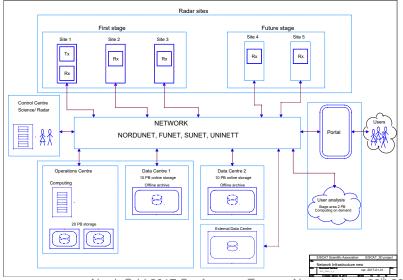
NeIC EISCAT_3D Support Project (E3DS)

- Project started January 15th 2015.
 - Basis: Letters of Interest to NeIC from EISCAT (2012, 2014)
 - Decision to launch project by NeIC Board (2014)
- Resources committed to project: EISCAT and NeIC Also, CSC, Tromsø and Umeå
- Steering group (representing partners that have committed resources):
 - Yasunobu Ogawa, EISCAT-Japan, (NIPR)
 - Craig Heinselman, EISCAT
 - Tomasz Malkiewicz, NeIC (CSC)

Nordic e-Infrastructure

NeIC EISCAT_3D Support Project (E3DS)

- Project participants:
 - Project manager (0.5 FTE): John White, NeIC.
 - Ingemar Häggström, EISCAT, Kiruna
 - Anders Tjulin, EISCAT, Kiruna
 - Assar Westman, EISCAT, Kiruna
 - Carl-Fredrik Enell, EISCAT, Kiruna
 - Sathyaveer Prasad, EISCAT, Kiruna
 - Tor Johansen, University of Tromsø
 - Harri Hellgren, EISCAT, Kiruna
 - Ari Lukkarinen, CSC
 - · Sari Lasanen, University of Oulu
 - Mattias Wadenstein, University of Umeå
 - Åke Sandgren, University of Umeå
 - Juha Vierinen, University of Tromsø
 - Ilkka Virtanen, University of Oulu
 - Ulf Tigerstedt, CSC



E3DS Project Goals

- Find workable and cost-efficient solutions for the EISCAT_3D computing, storage and archive.
- Facilitate an effective dialogue on the implementation of EISCAT_3D with the stakeholders in the Nordic countries.
- Make best use of the existing expertise in the Nordic countries for implementing (the e-Infrastructure of) EISCAT_3D.

EISCAT_3D Wide-Area Schematic

EISCAT_3D computing

- On-site computing infrastructure (per radar site):
 - Reduce data rates to manageable levels (19 Tb/s \rightarrow 53 Gbit/s);
 - Two stages of beam forming.
 - $\cdot~$ Sub-arrays 109 \times 5.0 TFLOPS. (FPGA)
 - · Overall beam former **22 TFLOPS**.
 - 86 TB RAM/SSD ring buffer.
 - Process computer (standard data products) **55 TFLOPS**.
- Off-site data-processing:
 - Operations Centre will coordinate the radar operations and observation modes;
 - · Monitor production of standard data products from sites;
 - Generate non-standard products, multi-static data products and meta-data;
 - Eventually requires \approx **500 TFLOPS.**
 - Located within existing e-infrastructure?
- Control centre located functionally within Operations Centre.
 - At Skibotn during commissioning, subsequently at Kiruna.

I.

EISCAT_3D Network Traffic Matrix

	From								
To (below)	Ops Centre	Data 1	Data 2	Skibotn	Bergfors	Karesuvanto	Jokkmokk	Andoya	Sum
Ops Centre	N/A	1	1	53	53	53	53	53	267
Data 1	2	N/A	0.5	0	0	0	0	0	3
Data 2	2	0.5	N/A	0	0	0	0	0	3
Skibotn	1	0	0	N/A	0	0	0	0	1
Bergfors	1	0	0	0	N/A	0	0	0	1
Karesuvanto	1	0	0	0	0	N/A	0	0	1
Jokkmokk	1	0	0	0	0	0	N/A	0	1
Andoya	1	0	0	0	0	0	0	N/A	1
UK (RAL)	0	1	1	0	0	0	0	0	2
Japan (NIPR)	0	1	1	0	0	0	0	0	2
Sum (Out)	9	3.5	3.5	53	53	53	53	53	

All numeric values are in Gb/s. A red (green) box indicates a (non) redundant path. Orange data transferred outside the Nordic area.

Nordice-Infrastructure Collaboration

EISCAT_3D Integrated computing

• Site computing:

- Virtualized cluster: \approx 80 TFLOPS
- Beam forming containers/VMs.
- Process computing containers/VMs.
- User analysis computing containers/VMs.

Operations Centre computing:

- Virtualized cluster: \approx 500 TFLOPS
- 3D operations containers/VMs.
- User analysis computing containers/VMs.
- "Controller" node for virtualized cluster.

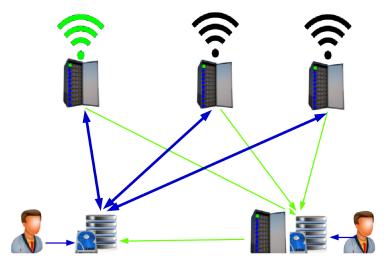
• User analysis computing:

- User analysis containers/VMs distributed through Operations Centre and sites.
- User analysis jobs interruptible by radar state.
- Analysis computing profiles matched bycontainer/VM.

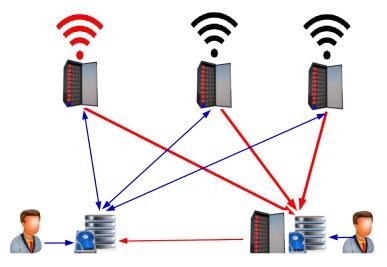
• Virtualized e-infrastructure run by national provider(s).

norden NordForsk

Nordic Tier-1 (NT1)


- CERN/LHC Tier 1 computing in the Nordic countries. Distributed site.
 - Bergen, Oslo
 - Umeå, Linköping
 - Copenhagen, Helsinki
- Project hosted within NeIC.
 - \approx 12 people. 50% average.
 - Since 2010, part of EGI.
 - Serves ALICE, ATLAS.
 - Compute and Storage resources.
 - Networking by NorduNet.

Nordic e-Infrastructure


Norden ILEIC Nordice-Infrastructure NordForsk

e-infrastructure 3-D Operations: Low power

Norden ILEIC Nordice-Infrastructure NordForsk

e-infrastructure 3-D Operations: High power

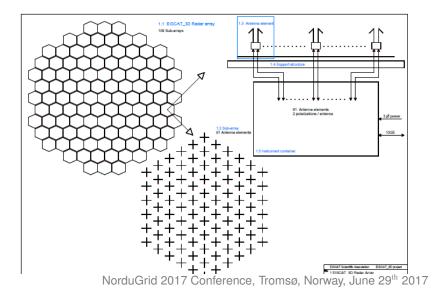
norden [IBIC

Concluding Remarks

- EISCAT_3D project on schedule.
 - Test sub-array this summer 2017
- E3DS project has aided in requirements for:
 - Operations Centre
 - Data Centre
 - Site and Operations Centre computing:
 - · Take advantage of virtualization to operate as single cluster.
 - · Cluster operations by national provider(s).
 - · EISCAT_3D relieved from cluster operations.
 - $\cdot\,$ Spare cycles used for EISCAT_3D user analysis or other.
- Use existing expertise to aid EISCAT_3D to perform science.

Nordic e-Infrastructure

Thank you


Questions?

Written in LATEX

27

EISCAT_3D sub-arrays detail

norden NordForsk Nordic e-Infrastructure

E3DS Project Documents

• Project documents released:

https://wiki.neic.no/wiki/EISCAT_3D_Support#Documents

- MA-1: Requirements and their implications for EISCAT_3D data handling and processing at the operations centre
- MA-2: Requirements and their implications for EISCAT_3D data handling and processing at the data centre
- MA-3: EISCAT_3D Wide-Area Network Plan
- MA-4: Recommended solutions for the operation and data centres.
- MB-1: On-site computing requirements for EISCAT_3D test sub-array
- MB-2: Consultation on selecting architecture/technology for the on-site computing related to a test-subarray
- MB-4: Consultation on the procurement plan for EISCAT_3D core site test-subarray in particular to ensure its compliance with the overall high level computing architecture of the EISCAT_3D system
- MC-1: Test sub-array sub-systems and interfaces
- MD-3: "Report on solutions for the data archive, including a description on how users can get access to adequate computing facilities"