
Virtualisation & containers – �
a RAL perspective

Andrew Lahiff
STFC Rutherford Appleton Laboratory

29th June, NorduGrid 2017

ComputeStorageVirtualisation platforms

Infrastructure in the RAL Tier-1

Microsoft
Hyper-V

OpenNebula

OpenStack

CASTOR

Ceph

HTCondor

virtual machines bare metal containers on bare metal

2

Virtualisation at RAL
•  Enterprise virtualisation platforms for services

–  Microsoft Hyper-V
•  cluster of hypervisors with shared storage

–  Starting to migrate to VMware

•  Private clouds, mostly for development work only (so far)
–  OpenNebula

•  ~892 cores, Ceph storage backend

•  for almost 2 years the RAL HTCondor pool has made
opportunistic use of otherwise unused cloud resources

•  will be decommissioned later

 this year

–  OpenStack

Typical cloud usage by HTCondor,
generally up to ~300 cores are used

3

Containers
•  What is a container?

–  a container consists of an application and all its
dependencies which can be run in an isolated way

–  make uses of kernel features (cgroups, namespaces, ...)

•  Benefits include
–  more lightweight than VMs
–  independence from host OS & libraries

–  can be run anywhere, regardless of kernel version or host
Linux distribution

VMs

Containers

4

Batch systems
•  Use of containers for running jobs on worker nodes can

be very useful
–  benefits for sites

•  much more flexibility

•  jobs are decoupled from the OS & libraries on the hosts
•  site can upgrade worker node OS without affecting VOs

•  different VOs can use different (Linux) OSs if necessary

–  benefits for VOs
•  jobs can have exactly the same environment no matter what

site they’re running on

5

Batch systems
•  We migrated from Torque+Maui to HTCondor in 2013

–  gave us the ability to use Linux kernel functionality to
isolate jobs

–  cgroups (CPU, memory, ...)
•  resource limits & monitoring

•  ensuring processes can’t escape the batch system

–  PID namespaces
•  processes in a job can’t see any other processes on the host

–  mount namespaces
•  /tmp, /var/tmp inside each job is unique

•  Limitation: all jobs share the same root filesystem
–  e.g. need to run SL6 worker nodes to run jobs in SL6

environments
6

HTCondor Docker universe
•  Docker universe

–  introduced in HTCondor 8.3.6 in June 2015

–  HTCondor runs each job in a Docker container
•  Docker makes it easy to create & manage images

–  successfully ran LHC jobs at RAL in 2015
•  jobs in SL6 containers on SL7 worker nodes

•  (Some) features
–  can bind-mount directories/files from the host

•  useful for CVMFS, configuration files

–  all Linux capabilities dropped by default
•  needs to be disabled for jobs requiring glexec

7

HTCondor Docker universe
•  A RAL SL7 worker node

Worker node

HTCondor

Docker

job jobjob

CVMFS
+ autofs

•  containers run as
unprivileged pool
account users

•  users don’t have
access to the Docker
daemon at all

•  no way for users to
specify arbitrary
images via the Grid

•  CVMFS available in
containers using bind
mounts (shared mount
propagation)

8

HTCondor Docker universe
•  Earlier this year we migrated fully to the Docker universe

–  all jobs run in containers on bare metal

–  migrated slowly over a period of a few months

–  all existing functionality preserved, e.g. glexec, machine job
features, CPU accounting, ...

•  Some statistics
–  ~400K containers per week

–  1.7M past month

9

Containers & unprivileged users
•  Docker engine

–  daemon runs as root

–  to create to containers you essentially have root access

•  What if users want to run their own containers?
–  e.g. run each payload job in containers inside the pilot

–  need to be able to run containers as unprivileged users

•  Singularity
–  allows a user to run a process as the same user in a

specified environment
–  provides

•  file isolation

•  process isolation

10

Singularity
•  Will provide Singularity in Centos 7 containers

–  allow VOs such as CMS to run payload jobs in containers

Worker node

Pilot job

Payload Payload

Container

Container Container

Docker container (provided & run by
the site)

Singularity container (provided & run by the VO)

•  payload jobs cannot
see other processes
on the host or even
processes from the
pilot

•  payload jobs cannot
see any files from the
pilot

•  but no limits on
resources used by
payload jobs

11

Worker nodes & storage
•  We have more than just jobs running in containers on WNs

–  started rolling out xrootd Ceph gateways & proxies onto
WNs

•  Migrating from CASTOR to Ceph for disk-only storage
–  an important driver for migrating to SL7 worker nodes

•  jobs access data via the local gateways
•  highly scalable xrootd access to Ceph

Gateway
Gateway

Ceph
Gateway

Worker node

xrootd
gateway

xrootd
proxy

S3, Swift & GridFTP, xrootd

12

Monitoring & traceability
•  Containers give greater visibility into what each job is doing

Time series resource usage metrics per job, including network

Network connections per job
Local xrootd gateway access to storage by user & by job

W
ea

ve
 S

co
pe

13

Towards the future
•  Since on worker nodes we’re

–  running jobs in containers

–  running xrootd servers in containers

•  Why not just run everything in containers?
–  just doing this on its own wouldn’t give many benefits

•  However, if the containers were managed by a scheduler
–  instead of having just a dedicated HTCondor batch farm,

the same nodes could be used for
•  Big Data, HPC, cloud hypervisors, ...

–  gain lots of more flexibility, help support a wider range of
activities

•  ‘new’ communities becoming more and more important

14

Container orchestration
•  Simplify managing long-running services by making two

fundamental changes
–  Run applications in containers

•  removes the dependency between applications & hosts

•  allows for isolation between different applications

–  Manage applications using a scheduler
•  if an application dies, it will be restarted

•  if a machine dies, the applications running on it will be restarted
elsewhere

•  automated staged-rollouts
•  auto-scaling

•  Don’t think about machines at all, just run your application

15

Mesos
•  Mesos is a cluster manager which

–  enables a large group of machines to appear as a single pool
of resources

–  allows you to have multiple schedulers sharing the same
resources

•  Have had a Mesos cluster running for around 2 years
–  varied in size from 256 to over 7000 cores (currently 352)

•  What has it being used for?
–  originally concentrated on investigating the benefits of

container orchestration for long-runnng services
–  more recently looking at providing flexible computing

infrastructure

16

Mesos
•  Last year did tests running > 5000 cores of jobs from all

LHC experiments
–  startds + CVMFS running in containers on Mesos joining

our production HTCondor pool

•  Currently an improved version is running real ATLAS jobs
–  CVMFS provided by (privileged)
 containers

–  startds in unprivileged containers

 join a CERN HTCondor pool

17

Mesos
•  Example: number of squid instances changing based on

load (request rate)

Spike in request rate triggers
creation of additional squid instances

Drop in request rate therefore number of
squid instances will be reduced

Each colour corresponds to a unique squid
instance in a container

18

Kubernetes as an abstraction layer
•  Kubernetes is an open-source container cluster manager

which can be run anywhere
–  on-premises

–  “as a service” on public clouds (natively or via 3rd parties)

•  Using it as an abstraction to enable portability between
–  on-premises resources

–  multiple public clouds

•  Benefits compared to traditional ways of using public clouds
–  no vendor lock-in

–  don’t need to worry about handling different cloud APIs
–  run workloads on public clouds in the same way that they’re

run locally

19

Kubernetes as an abstraction layer
•  Did initial testing with CMS CRAB3 analysis jobs

–  RAL, Google (GKE), Azure (ACS), AWS (via StackPointCloud)

•  Now running ATLAS production jobs on Azure
–  using “vacuum” model for independently creating startds which

join a HTCondor pool at CERN

Thanks to Microsoft for an Azure Research Award and to Google & AWS for credits

schedd

central manager

Azure Container Service

CERN

squid
squid startd

startd

startd

20

Kubernetes as an abstraction layer
•  Created by a single command

kubectl create –f atlas.yaml

•  This creates an elastic, self-healing site for running LHC jobs
–  on a single Kubernetes cluster
–  on multiple clusters around the world (via Kubernetes

federations)

pilot
pilot

pilot
custom

controller

squid
replication
controller

pilot

pilot
squid

horizontal
pod

autoscaler

service
(stable

VIP)

proxy
renewal

21

Kubernetes as an abstraction layer

22

Summary
•  Containers are being used a lot at RAL in production

–  migrated our HTCondor batch system to run all jobs in
Docker containers

–  have started rolling out xrootd gateways to Ceph in
containers on worker nodes

•  Other efforts at RAL involving containers
–  providing more flexible computing infrastructure

–  making it easier to run services
–  making it easier to use public clouds

23

Questions?

24

