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What is machine learning!? 2

Hyperbole
Artificial intelligence
Deep Learning
Multivariate Machine learning
methods °

Computational statistical inference




Artificial Intelligence

Machine learning

uses statistical inference to extract generalities from “training”
data

— “learns” from the training data

— when exposed to new data, demonstrates behaviours that
have not been explicitly programmed



Artificial Intelligence

Machine learning

requires
v lots of computing power
v lots of training data
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This talk 6

® VWhere might machine learning have a role in
distributed computing?

» ...and where might it not
® Optimising use of resources
® Anomaly detection

® Power efficiency and security



Main messages 7

® Machine learning is only useful if there is a sufficient
quantity of appropriate training data

» Rubbish in = rubbish out

® More complicated models do not guarantee better
performance

® We should always ask ourselves

» Can the problem be solved with a simple procedural
algorithm rather than a complex ML method?

» Do we have a large enough set of relevant training data!’

» Is the chosen model best suited to the problem?



Supervised learning




Unsupervised learning




Reinforcement learning




Classification Regression




Training data |2

Fortunately we have plenty of historical data from distributed
computing operations... jobs, data movement, sites, etc etc
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Optimising use of Optimising power
computing resources utilisation efficiency

Anomaly detection Security




Optimising use of resources
® M. Lassnig et al @ CHEP2016, contribution |31

» Using machine learning algorithms to forecast network and system load metrics for
ATLAS Distributed Computing

» https://indico.cern.ch/event/5056 | 3/contributions/2227924/attachments/
1346952/2031409/Oral-13 |.pdf

TRAINING

Static metrics
Historical Regression
Dynamic metrics ;
data algorithm

Training target

| 4


https://indico.cern.ch/event/505613/contributions/2227924/attachments/1346952/2031409/Oral-131.pdf
https://indico.cern.ch/event/505613/contributions/2227924/attachments/1346952/2031409/Oral-131.pdf
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® M. Lassnig et al @ CHEP2016, contribution |31

» Using machine learning algorithms to forecast network and system load metrics for
ATLAS Distributed Computing

» https://indico.cern.ch/event/5056 | 3/contributions/2227924/attachments/
1346952/2031409/Oral-13 |.pdf

TESTING
Unseen Trained regression B i
batch algorithm
.
hist.
data

Target
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Optimising use of resources |6
® M. Lassnig et al @ CHEP2016, contribution |31

» Using machine learning algorithms to forecast network and system load metrics for
ATLAS Distributed Computing

» https://indico.cern.ch/event/5056 | 3/contributions/2227924/attachments/
1346952/2031409/Oral-13 |.pdf

SE

| suac mewrics Y

New Trained regression

data eorith Prediction



https://indico.cern.ch/event/505613/contributions/2227924/attachments/1346952/2031409/Oral-131.pdf
https://indico.cern.ch/event/505613/contributions/2227924/attachments/1346952/2031409/Oral-131.pdf

Optimising use of resources: DDM example | 7
® M. Lassnig et al @ CHEP2016, contribution |31

® Basic idea:

» ATLAS distributed data management system involves a
heterogeneous infrastructure with a highly dynamic state

» Human interaction is important - “signing off” decisions and tasks;
algorithms and their parameters tuned based on experience

» Potential for improvement

® Data rebalancing: disk space doesn't match CPU

® Placement selection: where to put data!

® Source selection: where to run jobs if multiple input copies
available!?

® Robustness: automatically reschedule tasks/transfers



M. Lassnig et al @ CHEP2016, contribution |31

DDM Network Metrics

Centrally collect and make available DDM metrics to help with those problems
Static link metrics

Static metrics
= Source and destination site

= Closeness as defined by ATLAS Distributed Computing Operations, updated monthly

Dynamic link metrics
= Packetloss as a percentage 0erfSONAR]

= Latency as median one-way link delay perfSONAR]

= Percentile File Throughput in mbps FTS, Dashboard, FAX]
= Link Throughput in mbps perfSONAR]

= Queued files per activity Rucio]

= Done files per activity in the last n hours Rucio]

CHEP'2016 Machine Learning for ATLAS DDM Network Metrics



M. Lassnig et al @ CHEP2016, contribution |31

Training target

First objective: Heavy lon placement_

minimise job waiting time t[activated - defined]
subject limited number of potential sites with himem queues
existing data across all sites
available free space at potential destination sites
DDM network metrics latency, packetloss, throughput, closeness
all involved queue lengths prodsys, panda, rucio
learn for all heavy ion data subject to given constraints — classify destination sites

Place or rebalance heavy ion data as close as possible to potential scheduling targets
Constrained learning function with all input and output metrics available

CHEP'2016 Machine Learning for ATLAS DDM Network Metrics 4



M. Lassnig et al @ CHEP2016, contribution |31

Regression

algorithm
Time to complete transfer estimator

Close in the geographical sense is misleading, instead train an estimator

= Learn input DDM network metrics, including categorized variates
= Model input (bytes, source, destination, activity)
= Model output file transfer duration I

( Data Consolidation, TO Export,
L Production Input, etc...
( full workflow, including queues,

Method uses decision trees IS S

= Effective and efficient tool for classification and regression of large datasets

= Finds nonlinear relationships between variates
Cross-validation against overfitting

= Many random samples generated, each with 80% training, 20% test split

= Each sample fitted with separate tree, in our first evaluation 1 month of data used
Random forest regressor of many trees

= Final prediction which is robust to outliers and noise (Breiman, 2001)

CHEP'2016 Machine Learning for ATLAS DDM Network Metrics 5



M. Lassnig et al @ CHEP2016, contribution 131

Time to complete transfer estimator

Prediction

CHEP'2016

TTC for all activities (CERN-PROD -> BNL-ATLAS):
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Storage optimisation for LHCDb

Long-term prediction
“X.? . .

A Unpopular
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Short-term forecast
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Optimising use of resources: next steps

® Use predictions of regression algorithms to optimise data
placement?

» incrementally, adding as a weight to existing placement
algorithms!?

® Another idea: can we extend to job placement?

» Are there sufficient metrics available to be able to make
useful predictions!?

» More important in a cloud computing environment!?
® Costs of CPU/network/storage become metrics...

® ATLAS qualification task for Simen Hellesund (UiO)

® Key component of the “Archestrate” application

23



Optimising use of Power utilisation
computing resources efficiency

Anomaly detection Security




[ think

What is anomaly detection? is

® Automatic identification of data instances (events) that are in some way

different from the bulk of the data and which need detailed scrutiny by experts.
Usually implied:

» produced by a different mechanism than the bulk of the events
» small number of anomalies w.r.t. the main part of the data
® Can be

» supervised: train to recognise specific anomalous cases

» semi-supervised: train only on the bulk of the data without anomalies —
strong relation to one-class classification

» unsupervised: algorithm automatically identifies the bulk by some means and
thence the anomalies

® Difficult problem because in general we don’t know what the anomalies look
like, and there may be very few of them

» Testing is particularly challenging: how do we evaluate the performance of an
algorithm on a type of event that we have never seen before!

25



Types of anomaly
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Anomaly detection applications in Grid computing

® Detect abnormal performance and alert shifters
» Network
» Disk/tape activity
» Time to complete jobs
» Memory consumption, etc
» Intrusion detection

® Conversely, identify jobs/transfers/tasks which are causing
error messages but are hot anomalous and will
probably go away

» Saves time of shifters



Anomaly detection: time series analysis 28

® Wide variety of

>Anoma|), techniques
, including multi-
)

variate methods

® Range from very
simple (moving
averages, fits) to
highly
sophisticated
(recurrent NNis)

5 ® Determining the
d)AnomaIy tolerance is a big

I

000 025 050 075 1.00 125 150 175 2.00 part of this




Anomaly detection: split sample classifier 29
® Suitable for collective anomalies only
e Two samples: reference and subject Reference Su bjeCt

» We want to see if the subject is consistent
with the reference
® Split both into two parts - training and
testing
® Train a classifier (BDT, NN etc) to distinguish 0 |

between the test and reference (e.g. as if they
were “signal” and “background”)

Untrained
® |n the testing phase, see if the classifier .
classifier

makes any progress in separating the v
reference and subject

Trained

» If it does: there is something about the > .
subject sample to distinguish it from the classifier

reference
» If it is supposed to be the same as the ‘/ AUC 505

reference, clear evidence that something is X AUC>05
wrong




Anomaly detection: split sample classifier 30
Global difference

® Shape of the ROC curve
may help to understand
whether the problem is local
or global

® [nspection of the BDT/NN
weights may allow us to
work out which combination
of variables are leading to
the separation

>

Classifier output

EREF

Local difference

>

Classifier output

EREF



Anomaly detection: auto-encoder

® Auto-encoder: NN trained on its own input - suitable for collective or point anomalies

» Usually includes a bottle-neck to compress the features of the data (e.g. PCA)

Target
V

1

Layer

® Normally used for dimension-reduction but proposed as a means of anomaly detection

® |dea: a trained replicator neural network should reconstruct new examples taken from the bulk
(normal) data with low error, but when presented with an anomalous example, will reconstruct it
with a high error since it contains qualities that have not previously been encoded

» Provides a natural measure of abnormality: the reconstruction error (difference between the

input and the output)
N

. mn out\2
» Reconstruction error per event = Z(l’z‘ —27")" Niis the number of features
=1



Anomaly detection: auto-encoder

“One class’ classifier

Drawback: less
discrimination power Untrained
auto encoder
Advantage: no need to v
train on subject data, fast
evaluation Trained auto

encoder

v AUC=0.5 :::l
X AUC>0.5




Anomaly detection: surface/density-based 33

Novelty Detection

learned frontier

training observations

new regular observations
new abnormal observations

-4 -2 0 2 4
error train: 21/200 ; errors novel regular: 2/40 ; errors novel abnormal: 1/40

® Abnormal cases
likely to be
separated in
variable space
from normal cases

® Form a boundary

around the
normal cases (one
class SYM),
abnormal cases
beyond the
boundary

® Need to worry

about tolerances
(and evaluation
time)



Optimising use of Power utilisation
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Power utilisation efficiency (PUE) 35

® Example: study by
Google/DeepMind

® PUE = ratio of the total
building energy usage to
the IT energy usage

» Not easy to model due
to high complexity of
data centre cooling
equipment and vast
number of potential
configurations, non-
linear relations
between equipment
and environmental
conditions

PUE

1.26+

1.224

1.184

1.144

1.10

Continuous PUE Improvement
Average PUE for all data centers

Plateau

2008 2009 2010 2011 2012 2013

B Trailing twelve-month (TTM) PUE B Quarterly PUE

Fig 1. Historical PUE values at Google.



Power utilisation efficiency (PUE)

® Use an ensemble of deep
neural networks to learn
the PUE w.r.t. historically
measured data, for a large
number of parameters

® Use the trained networks
to predict PUE under a
range of conditions

» enabling optimisation of
the data centre to
minimise PUE

® Remark: similar task to the
Grid performance
optimisation work...?

36
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. Total server IT load [kW]

. Total Campus Core Network Room (CCNR) IT load [kW]

. Total number of process water pumps (PWP) running

. Mean PWP variable frequency drive (VFD) speed [%]

. Total number of condenser water pumps (CWP) running

. Mean CWP variable frequency drive (VFD) speed [%]

. Total number of cooling towers running

. Mean cooling tower leaving water temperature (LWT) setpoint [F]
. Total number of chillers running

. Total number of drycoolers running

. Total number of chilled water injection pumps running

. Mean chilled water injection pump setpoint temperature [F]
. Mean heat exchanger approach temperature [F]

. Outside air wet bulb (WB) temperature [F]

. Outside air dry bulb (DB) temperature [F]

. Outside air enthalpy [kJ/kg]

. Outside air relative humidity (RH) [%]

. Outdoor wind speed [mph]

. Outdoor wind direction [deg]



Power utilisation efficiency (PUE)
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Fig. 3 Predicted vs actual PUE values at a major DC.
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Intrusion detection

® ALICE example: https://arxiv.org/pdf/1704.06 193.pdf

4

4

Grids face complex security challenges

Interesting targets for attackers seeking for huge
computational resources, since users can execute
arbitrary code in the worker nodes on the Grid
sites

Even with unbreakable isolation (VMs, containers)
the jobs themselves may still do considerable
harm

® Benign users can often break things
unintentionally

Proposal from ALICE to monitor the jobs
themselves using ML techniques

Use job and system logs, system call sequence,
other common monitoring data.

SVMs suggested as a reasonable algorithm choice

"

Pilot Job

39


https://arxiv.org/pdf/1704.06193.pdf

Conclusions 40

® Machine learning could have a big impact on distributed computing

» Increasing efficiency of computing resources utilisation
» Detecting faults

» Detecting security violations

» Improvement energy efficiency

® How relevant this will be if we make more use of commercial clouds remains
to be seen

® Important to use it when it can help, and not to try to use it when it can’t
® This is interesting work: potential to recruit students to work on these topics

» ML experience becoming essential for many computing-related jobs in
industry

® Personal comment: computing is under-represented at HEP meetings on
machine learning (IML,ATLAS ML forum...)



Backup



Classification without machine learning

variable 1 TUNED on Monte Carlo to

maximize S/+/B

» variable 2

42



Classification with machine learning 43

variable 1 TRAINED on Monte Carlo to

maximize S/+/B

Boundary defined by (e.q.)
BDT or NN score

~density

Classifier output

» variable 2
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Interesting links 45

® Inter-experiment machine learning working group (IML)

» https://iml.web.cern.ch

» Meets regularly, all agendas public

» ML Activities of the four LHC experiments
® CERN OpenData

» http://opendata.cern.ch/?In=en
® Last CHEP conference

» http://chep2016.org



https://iml.web.cern.ch
http://chep2016.org

