
Virtualisation & containers – a RAL perspective

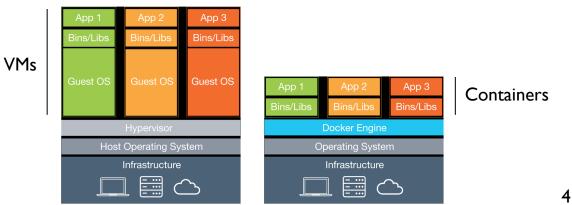
Andrew Lahiff STFC Rutherford Appleton Laboratory

29th June, NorduGrid 2017


Infrastructure in the RAL Tier-I

Virtualisation at RAL

- Enterprise virtualisation platforms for services
 - Microsoft Hyper-V
 - cluster of hypervisors with shared storage
 - Starting to migrate to VMware
- Private clouds, mostly for development work only (so far)
 - OpenNebula
 - ~892 cores, Ceph storage backend
 - for almost 2 years the RAL HTCondor pool has made opportunistic use of otherwise unused cloud resources
 - will be decommissioned later this year
 - OpenStack


Typical cloud usage by HTCondor, generally up to ~300 cores are used

Containers

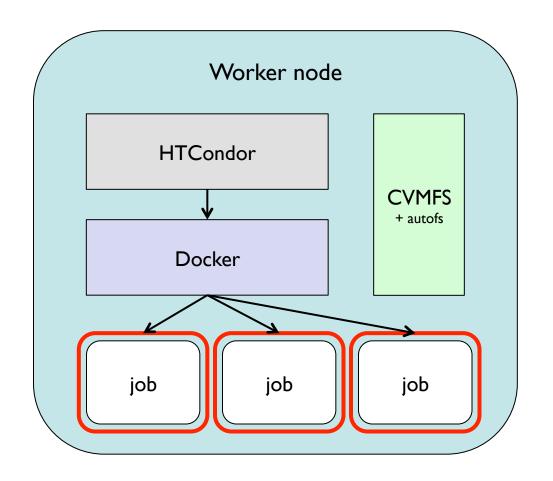
- What is a container?
 - a container consists of an application and all its dependencies which can be run in an isolated way
 - make uses of kernel features (cgroups, namespaces, ...)
- Benefits include
 - more lightweight than VMs
 - independence from host OS & libraries
 - can be run anywhere, regardless of kernel version or host

Linux distribution

Batch systems

- Use of containers for running jobs on worker nodes can be very useful
 - benefits for sites
 - much more flexibility
 - jobs are decoupled from the OS & libraries on the hosts
 - site can upgrade worker node OS without affecting VOs
 - different VOs can use different (Linux) OSs if necessary
 - benefits for VOs
 - jobs can have exactly the same environment no matter what site they're running on

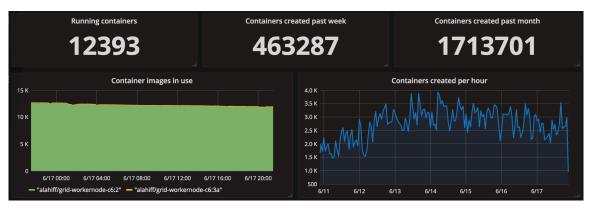
Batch systems


- We migrated from Torque+Maui to HTCondor in 2013
 - gave us the ability to use Linux kernel functionality to isolate jobs
 - cgroups (CPU, memory, ...)
 - resource limits & monitoring
 - ensuring processes can't escape the batch system
 - PID namespaces
 - processes in a job can't see any other processes on the host
 - mount namespaces
 - /tmp, /var/tmp inside each job is unique
- Limitation: all jobs share the same root filesystem
 - e.g. need to run SL6 worker nodes to run jobs in SL6 environments

HTCondor Docker universe

- Docker universe
 - introduced in HTCondor 8.3.6 in June 2015
 - HTCondor runs each job in a Docker container
 - Docker makes it easy to create & manage images
 - successfully ran LHC jobs at RAL in 2015
 - jobs in SL6 containers on SL7 worker nodes
- (Some) features
 - can bind-mount directories/files from the host
 - useful for CVMFS, configuration files
 - all Linux capabilities dropped by default
 - needs to be disabled for jobs requiring glexec

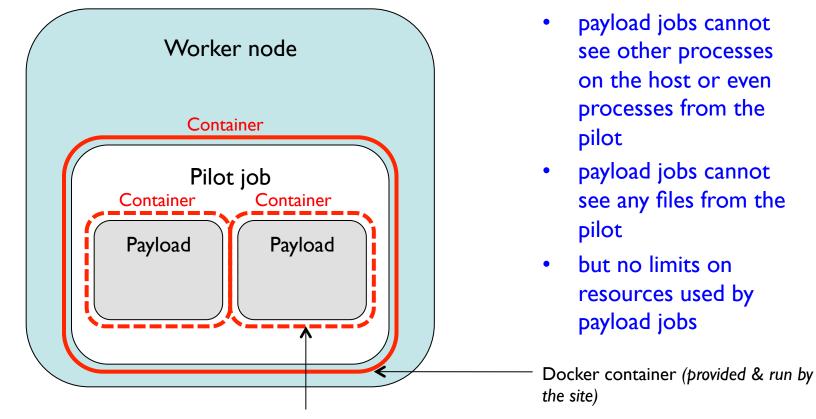
HTCondor Docker universe


• A RAL SL7 worker node

- containers run as unprivileged pool account users
- users don't have access to the Docker daemon at all
- no way for users to specify arbitrary images via the Grid
- CVMFS available in containers using bind mounts (shared mount propagation)

HTCondor Docker universe

- Earlier this year we migrated fully to the Docker universe
 - all jobs run in containers on bare metal
 - migrated slowly over a period of a few months
 - all existing functionality preserved, e.g. glexec, machine job features, CPU accounting, ...
- Some statistics
 - ~400K containers per week
 - I.7M past month

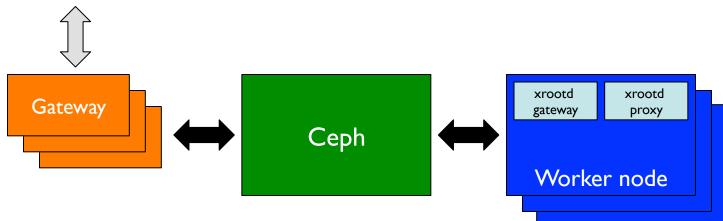


Containers & unprivileged users

- Docker engine
 - daemon runs as root
 - to create to containers you essentially have root access
- What if users want to run their own containers?
 - e.g. run each payload job in containers inside the pilot
 - need to be able to run containers as unprivileged users
- Singularity
 - allows a user to run a process as the same user in a specified environment
 - provides
 - file isolation
 - process isolation

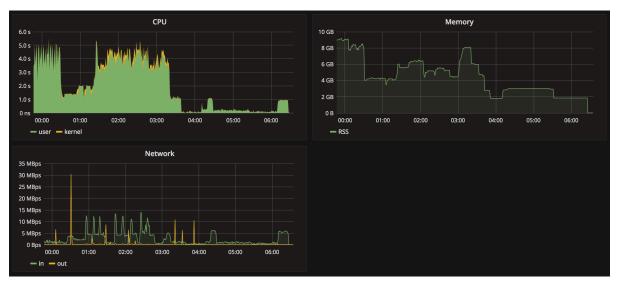
Singularity

- Will provide Singularity in Centos 7 containers
 - allow VOs such as CMS to run payload jobs in containers



Singularity container (provided & run by the VO)

Worker nodes & storage


- We have more than just jobs running in containers on WNs
 - started rolling out xrootd Ceph gateways & proxies onto WNs
- Migrating from CASTOR to Ceph for disk-only storage
 - an important driver for migrating to SL7 worker nodes
 - jobs access data via the local gateways
 - highly scalable xrootd access to Ceph

Monitoring & traceability

• Containers give greater visibility into what each job is doing

Time series resource usage metrics per job, including network

170614 11:01:49 144 XrootdXeq: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker pvt IP v4 login as atlasprod

170614 11:01:49 144 acc_Audit: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker grant gsi atlasprod@htcjob5609679_0_slot1_11_pid5408.ralworker read atlas:scratchdisk/rucio/panda/ce/f1 /panda.0614095933.558317.lib._11488760.9783001038.lib.tgz

170614 11:01:59 144 XrootdXeq: tatls011.5668:88@htcjob5609679_0_slot1_11_pid5408.ralworker disc 0 :00:10

Local xrootd gateway access to storage by user & by job

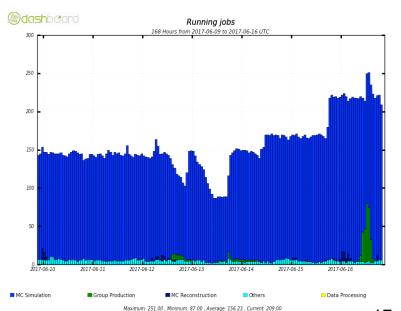
c				×
Weave Scope	HTCJob1814616	58 O)	
ŭ				
e.	alahiff/grid-workernode-c6			
S S	lcg1616.gridpp.rl.ac.uk			
Ž	⊑ ≻_ C Ⅱ ■			
	INBOUND	PORT	• #	
	HTCJob18146168_0_slot1_3_PID24157	51523	1	
	HTCJob18146168_0_slot1_3_PID24157		1	
	HTCJob18146168_0_slot1_3_PID24157	35191	1	
k				
	OUTBOUND	PORT 9684	▼# 5	
	vocms0806.cern.ch (188.184.83.197) cmssrv258.fnal.gov (131.225.205.232)	9684 9684	5 5	
	vocms0808.cern.ch (188.184.93.134)	9686 9686	2	
	cmssrv221.fnal.gov (131.225.207.128)	9686	2	
	vocms0195.cern.ch (188.184.86.17)	4080	2	- 11
	atlas-squid.gridpp.rl.ac.uk (130.246.183		2	- 11
	HTCJob18146168_0_slot1_3_PID24157		1	- 11
	vocms0311.cern.ch (128.142.209.44)	4080	1	- 11
	HTCJob18146168_0_slot1_3_PID24157	37155	1	- 11
	HTCJob18146168_0_slot1_3_PID24157	35191	1	- 11
	atlas-squid.gridpp.rl.ac.uk (130.246.183	3128	1	- 11
	atlas-squid.gridpp.rl.ac.uk (130.246.183	3128	1	- 11
	dc029.pic.es (193.109.172.29)	21040	1	- 11
	xrootd01-cmst1.pic.es (193.109.172.13		1	- 11
>	xrootd-cmst1-door.pic.es (193.109.172		1	- 11
	xrootd-cms.infn.it (193.205.76.83)	1094	1	
			•	
L	PROCESSES PID CI	-		
	cmsRun 2988 3.15		1 GB	
	<u>cmsRun</u> 2988 3.15 condor_startd 2421 0.03		1 GB	
0	<u>condor_startd</u> 2421 0.03 <u>cmsRun</u> 61747 0.03		MB	
	condor_procd 2421 0.00		MB	
			+22 🔻	

Network connections per job

Towards the future

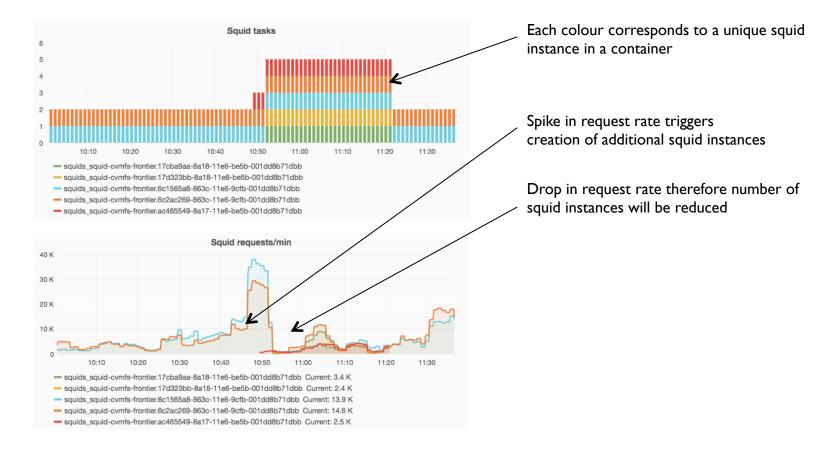
- Since on worker nodes we're
 - running jobs in containers
 - running xrootd servers in containers
- Why not just run everything in containers?
 - just doing this on its own wouldn't give many benefits
- However, if the containers were managed by a scheduler
 - instead of having just a dedicated HTCondor batch farm, the same nodes could be used for
 - Big Data, HPC, cloud hypervisors, ...
 - gain lots of more flexibility, help support a wider range of activities
 - 'new' communities becoming more and more important

Container orchestration

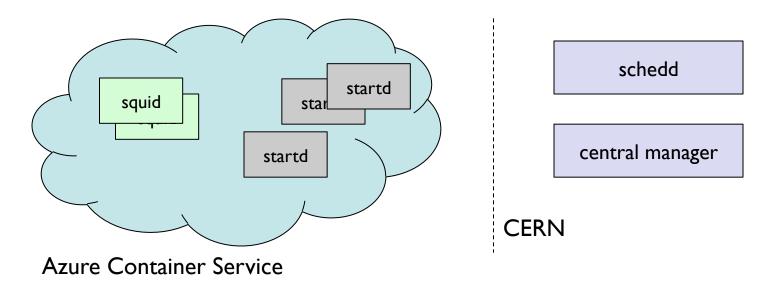

- Simplify managing long-running services by making two fundamental changes
 - Run applications in containers
 - removes the dependency between applications & hosts
 - allows for isolation between different applications
 - Manage applications using a scheduler
 - if an application dies, it will be restarted
 - if a machine dies, the applications running on it will be restarted elsewhere
 - automated staged-rollouts
 - auto-scaling
- Don't think about machines at all, just run your application

Mesos

- Mesos is a cluster manager which
 - enables a large group of machines to appear as a single pool of resources
 - allows you to have multiple schedulers sharing the same resources
- Have had a Mesos cluster running for around 2 years
 - varied in size from 256 to over 7000 cores (currently 352)
- What has it being used for?
 - originally concentrated on investigating the benefits of container orchestration for long-runnng services
 - more recently looking at providing flexible computing infrastructure

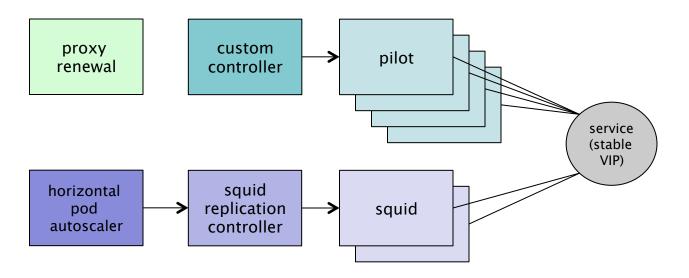

Mesos

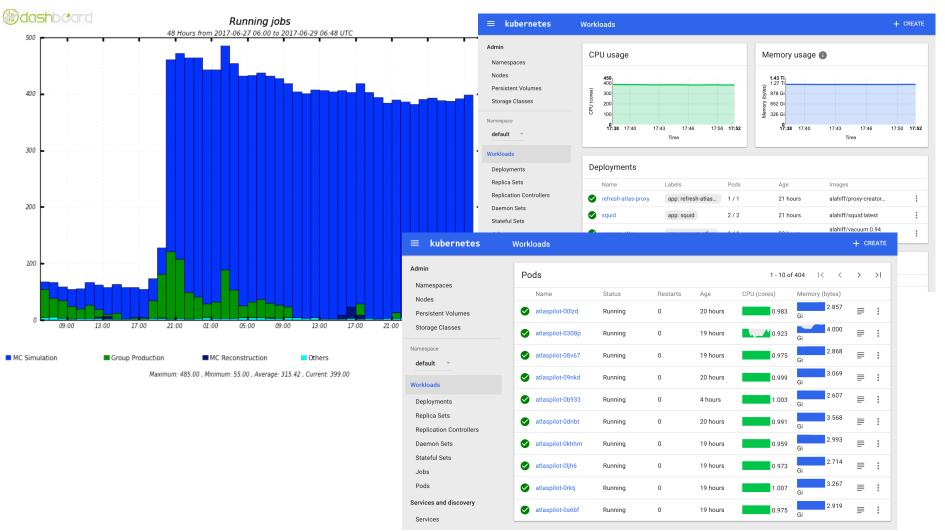
- Last year did tests running > 5000 cores of jobs from all LHC experiments
 - startds + CVMFS running in containers on Mesos joining our production HTCondor pool
- Currently an improved version is running real ATLAS jobs
 - CVMFS provided by (privileged) containers
 - startds in unprivileged containers
 join a CERN HTCondor pool


Mesos

• Example: number of squid instances changing based on load (request rate)

- Kubernetes is an open-source container cluster manager which can be run anywhere
 - on-premises
 - "as a service" on public clouds (natively or via 3rd parties)
- Using it as an abstraction to enable portability between
 - on-premises resources
 - multiple public clouds
- Benefits compared to traditional ways of using public clouds
 - no vendor lock-in
 - don't need to worry about handling different cloud APIs
 - run workloads on public clouds in the same way that they're run locally


- Did initial testing with CMS CRAB3 analysis jobs
 RAL, Google (GKE), Azure (ACS), AWS (via StackPointCloud)
- Now running ATLAS production jobs on Azure
 - using "vacuum" model for independently creating startds which join a HTCondor pool at CERN



• Created by a single command

kubectl create -f atlas.yaml

- This creates an elastic, self-healing site for running LHC jobs
 - on a single Kubernetes cluster
 - on multiple clusters around the world (via Kubernetes federations)

Summary

- Containers are being used a lot at RAL in production
 - migrated our HTCondor batch system to run all jobs in Docker containers
 - have started rolling out xrootd gateways to Ceph in containers on worker nodes
- Other efforts at RAL involving containers
 - providing more flexible computing infrastructure
 - making it easier to run services
 - making it easier to use public clouds

Questions?