

SUMMARY OF DARK MATTER WORKSHOPS

Caterina Doglioni – Lund University

Science Coffee, Lund University, 16/04/2015

OUTLINE OF THE WORKSHOPS

MIAPP: Dark MALT

DARK MATTER: ASTROPHYSICAL PROBES, LABORATORY TESTS, AND THEORY ASPECTS (DARK MALT 2015)

MITP: Effective Theories and DM

Applied to discuss interplay between theory, collider and other experiments in DM

Invited by the organizers to present and discuss Run-1 ATLAS results on DM

This Science Coffee:

an ATLAS experimentalist's perspective on DM after presentations and discussions with theory/Direct Detection researchers

MY (FORMAL) INTERESTS IN THESE WORKSHOPS

- ATLAS Astroparticle Forum:
 - Mandate:
 - Enhance contribution of ATLAS searches and measurements to open problems in cosmology and astrophysics
 - Perform joint measurements with other experiments towards answers to those problems
- ATLAS/CMS Dark Matter Forum
 - Mandate:
 - Agree upon benchmarks models for DM searches at ATLAS and CMS for the upcoming LHC run
 - Establish solid grounds of comparisons between experiments for Contact Interaction benchmark theories ("Effective Theories")

RECAP: WHAT WE KNOW ABOUT DARK MATTER

F. Zwicky – Coma cluster: mass vs light output

V. Rubin – Velocity of gas near Andromeda galaxy

Chandra/Hubble (NASA) – Visible mass of bullet cluster

WHAT WE DON[®]T KNOW ABOUT DARK MATTER

Tim Tait, DM@LHC 2013

WHAT WE DON[®]T KNOW ABOUT DARK MATTER

Tim Tait, DM@LHC 2013

WHAT WE WOULD LIKE DARK MATTER TO BE

(Our) preferred DM candidate

matches cosmological observations (e.g. thermal relic density): dark, stable, cold, weakly interacting with SM particles, mass of up to a few TeV → a WIMP

Complementarity between different experiments:

<u>http://en.wikipedia.org/wiki/Streetlight_effect</u> A story that an Iranian neutrino physicist told

KEEPING OUR MINDS OPEN

me during one lunch at MIAPP: (credits also to A. Boveia)

One late evening Nasreddin found himself walking home. It was only a very short way and upon arrival he can be seen to be upset about something. Alas, just then a young man comes along and sees the Mullah's distress.

"Mullah, pray tell me: what is wrong?"

"Ah, my friend, I seem to have lost my keys. Would you help me search them? I know I had them when I left the tea house."

So, he helps Nasreddin with the search for the keys. For quite a while the man is searching here and there but no keys are to be found. He looks over to Nasreddin and finds him searching only a small area around a street lamp.

"Mullah, why are you only searching there?"

"Why would I search where there is no light?"

Topkapi Palace Museum Library

"Nasreddin (17th-century miniature)"

SEARCHING FOR DM UNDER/AWAY FROM STREETLIGHT

Another workshop needed: http://tomerv.wix.com/lightdm

Selected topics in today's talk:

- Interpretation of hints from the galaxy
 - Galaxy center photon excess
 - 3.5 keV photon line
- Details of WIMP dark matter
 - Comparison of Colliders and Direct Detection experiments
 - Contact interactions and their validity
 - Low-WIMP-mass results from CRESST
 - Searches for DM (and mediators) at colliders

HINTS FROM THE GALAXY ?

Slides and pictures taken from:

- C. Weniger Annihilation Phenomenology (MITP Workshop)
- C. Weniger Fermi Gamma Ray Excess (MIAPP workshop)
- H. Min Lee SUSY Higgs portal and gamma-ray lines (MIAPP workshop)

Science Coffee, Lund University, 16/04/2015

PHOTONS FROM DARK MATTER

 $\mathcal{O}(\alpha$

DM annihilation processes

C. Doglioni - DM Workshop Summary - Lund Science Coffee

ζ

C. Weniger

WHERE/HOW TO LOOK FOR PHOTONS FROM DM

SEARCHES IN THE CENTER OF GALAXY, IN A NUTSHELL

C. Doglioni - DM Workshop Summary - Lund Science Coffee

9

First paper: http://arxiv.org/abs/1010.2752 10^{-6} $m_{DM} = 28 \text{ GeV}, XX \rightarrow b\overline{b}, \gamma = 1.1$ s^{-1} < 0.5° 5 $\sigma v = 9 x 10^{-26} cm^3/s$ $E_{\gamma}^{2}dN_{\gamma}/dE_{\gamma}$ (GeV cm⁻² 10^{-7} 5 10⁻⁸ 5 10^{-9} 0.5 1.0 5.0 10.0 50.0100.0 E_{γ} (GeV)

Residuals can be fitted with signal from **DM annihilation into b-quarks** → fueled b-flavored Dark Matter models

More recent analysis presented at MITP workshop: http://arxiv.org/abs/1409.0042

Channel	$\langle \sigma v \rangle$ (10 ⁻²⁶ cm ³ s ⁻¹)	$(GeV)^{m_{\chi}}$	$\chi^2_{\rm min}$	p-value
$\bar{q}q$	$0.83^{+0.15}_{-0.13}$	$23.8^{+3.2}_{-2.6}$	26.7	0.22
$\bar{c}c$	$1.24_{-0.15}^{+0.15}$	$38.2^{+4.7}_{-3.9}$	23.6	0.37
Бь	$1.75_{-0.26}^{+0.28}$	$48.7\substack{+6.4 \\ -5.2}$	23.9	0.35
$\overline{t}t$	$5.8\substack{+0.8\\-0.8}$	$173.3\substack{+2.8\\-0}$	43.9	0.003
<i>99</i>	$2.16\substack{+0.35\\-0.32}$	$57.5\substack{+7.5 \\ -6.3}$	24.5	0.32
W^+W^-	$3.52\substack{+0.48\\-0.48}$	$80.4^{+1.3}_{-0}$	36.7	0.026
ZZ	$4.12\substack{+0.55\\-0.55}$	$91.2\substack{+1.53 \\ -0}$	35.3	0.036
hh	$5.33\substack{+0.68\\-0.68}$	$125.7\substack{+3.1 \\ -0}$	29.5	0.13
$\tau^+ \tau^-$	$0.337\substack{+0.047\\-0.048}$	$9.96\substack{+1.05 \\ -0.91}$	33.5	0.055
$\left[\mu^+\mu^-\right.$	$1.57^{+0.23}_{-0.23}$	$5.23\substack{+0.22\\-0.27}$	43.9	0.0036] _{Jes}

• Uncertainties on spectrum:

UPDATED STUDY OF THE EXCE.

- New estimation of theoretical and empirical systematics
- Treatment of correlated uncertainties in fits
- Characterization of excess in terms of DM annihilation:
 - Good fit for gluon and (heavy) quark final states, but preference for higher DM masses wrt previous studies

http://arxiv.org/abs/1409.0042 http://arxiv.org/abs/1411.4647

- Exclusion of WW/ZZ-annihilating DM (w/caveats), but not HH
- Not excluded: point sources, lepton burst events

EXAMPLE RESULTS: FITS WITH UNCERTAINTIES

Spectrum	Parameters	χ^2/dof	p-value
broken PL	$\alpha_1 = 1.42^{+0.22}_{-0.31}, \ \alpha_2 = 2.63^{+0.13}_{-0.095}, \ E_{\text{break}} = 2.06^{+0.23}_{-0.17} \ \text{GeV}$	1.06	0.39
DM $\chi\chi \to \bar{b}b$	$\langle \sigma v \rangle = 1.76^{+0.28}_{-0.27} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 49^{+6.4}_{-5.4} \text{ GeV}$	1.08	0.36
DM $\chi \chi \to \bar{c}c$	$\langle \sigma v \rangle = 1.25^{+0.2}_{-0.18} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 38.2^{+4.6}_{-3.9} \text{ GeV}$	1.07	0.37
PL with exp. cutoff	$E_{\rm cut} = 2.53^{+1.1}_{-0.77} \text{ GeV}, \ \alpha = 0.945^{+0.36}_{-0.5}$	1.37	0.12
DM $\chi\chi \to \tau^+\tau^-$	$\langle \sigma v \rangle = 0.337^{+0.047}_{-0.048} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ m_{\chi} = 9.96^{+1.1}_{-0.91} \text{ GeV}$	1.52	0.06

C. Doglioni - DM Workshop Summary - Lund Science Coffee

RIMENT

SEARCHING FOR X-RAY LINES

XMM Newton http://xmm.esac.esa.int/

H. Minh Lee Signal samples				
Bulbul et al XMM-Newton				
Perseus cluster				
Nearby clusters: Coma, Centaurus, Ophiuchus				
All stacked 73 galaxy clusters				
$E = 3.55 - 3.57 \pm 0.03 \mathrm{keV}$ at $\gtrsim 3\sigma$.				
Chandra excess from Perseus, no line from Virgo cluster.				
 Boyarsky et al XMM-Newton 				
$\begin{cases} \text{Perseus cluster} \\ \text{Andromeda galaxy (M31)} \end{cases} \implies E \sim 3.5 \text{ keV} \end{cases}$				
5년 2월 22일 일묘일				

THE X-RAY LINE AT 3.55 KEV

X-ray line from galaxies H. Minh Lee

- Monochromatic photon lines probe well indirect signals of dark matter due to directional information.
- X-ray spectra (XMM-Newton) of various galaxy clusters and Andromeda show an unidentified line signal at 3.55 keV at ~4σ.

Possible interpretations: Sterile neutrinos, Axion-like scalars, Magnetic DM, SUSY Higgs-portal models...or none of them? http://arxiv.org/abs/1408.1699

http://resonaances.blogspot.com.br/2014/03/weekend-plot-all-of-dark-matter.html

WIMP DARK MATTER

- Slides and pictures taken from:
- R. Strauss CRESST low-mass results (MIAPP Workshop)
- Discussion on DM at colliders (MITP workshop)
- Mini-workshop on DM at colliders (MIAPP Workshop)

Science Coffee, Lund University, 16/04/2015

CRESST DIRECT DETECTION IN A NUTSHELL

DETECTOR IMPROVEMENTS FOR LOW-MASS SEARCH

http://arxiv.org/abs/1407.3146

- Upgrade towards CRESST-II:
 - Radio-pure, scintillating support structure
 - Backgrounds from previous Pb support structure problematic
 - New design for scintillating target (at TUM)
 - Veto of low-energy surface backgrounds
 - Using scintillating module shell signaling alpha particles
 - Low trigger threshold (0.60 keV)
 - Background-free from 12 keV
- Using a single upgraded detector module, 29.35 kg/live days (2013)

R. Strauss

- Exploit light yield to distinguish recoil types
- Much less background than previous run (Run32)

RECOIL RESULTS IN REGION OF INTEREST

- 79 events in red found in acceptance region
- No reliable background simulation yet: set limit, treat as signal
- Bonus: previous CRESST excess has been excluded and understood (possible background from support structure)

NEW CRESST LIMITS FOR LOW WIMP MASSES

FIG. 5. WIMP parameter space for spin-independent ($\sim A^2$) WIMPnucleon scattering. The 90 % C.L. upper limit (solid red) is depicted together with the expected sensitivity $(1 \sigma \text{ C.L.})$ from the background-only model (light red band). The CRESST-II 2σ contour reported for phase 1 in [3] is shown in light blue. The dashdotted red line refers to the reanalyzed data from the CRESST-II commissioning run [24]. Shown in green are the limits (90%) C.L.) from Ge-based experiments: SuperCDMS (solid)[7], CDM-Slite (dashed) [25] and EDELWEISS (dash-dotted) [26]. The parameter space favored by CDMS-Si [4] is shown in light green (90 % C.L.), the one favored by CoGeNT (99 % C.L. [2]) and DAMA/Libra $(3 \sigma \text{ C.L. } [27])$ in yellow and orange. The exclusion curves from liquid xenon experiments (90 % C.L.) are drawn in blue, solid for LUX [6], dashed for XENON100 [5]. Marked in grey is the limit for a background-free CaWO₄ experiment arising from coherent neutrino scattering, dominantly from solar neutrinos [28].

Bonus: previous CRESST excess has been excluded and understood (possible background from support structure)

WIMP-nucleon cross section [pb]

PROJECTIONS FOR FULL CRESST-II/UPGRADES

Expected Sensitivity with CRESST III

PROJECTIONS FOR FULL CRESST-II/UPGRADES

Expected Sensitivity with CRESST III

COMPLEMENTARITY OF DARK MATTER SEARCHES

Complementarity of DD/ID and colliders: this plot can still outline strengths of each of the

experiments

EFT VALIDITY AT COLLIDERS: OPTIONS DISCUSSED

- Do not consider EFT as a benchmark at all Pros: Focus on simplified models Cons: Theory community appreciates simplicity of EFT
- Keep EFT, untruncated
 Pros: Keeps things simple for whoever knows how to use it
 Cons: Will be misinterpreted, can't be compared to direct detection
- Truncate EFT (two methods available) Pros: Consistent procedure, established within ATLAS Cons: Model-dependent, takes away from EFT simplicity
- Only provide high-mediator-mass limit for simplified models
 Pros: Equivalent to EFT to all effects, avoids validity problem by explicitly
 mentioning presence of mediator
 Cons: Needs EFT for models without clear UV completion/limit

FAVORED OPTION BY MITP WORKSHOP PARTICIPANTS

Suggestion: experimentalists only give a Contact Interaction limit from models with explicit mediator, with very high mass mediators?

MORE ON CONTACT INTERACTIONS AT COLLIDERS

TAKE-HOME MESSAGE FOR COLLIDER SEARCHES

 Guiding principle for choice of Run-2 benchmarks: How would a DM signal look at colliders?

MORE ON LHC RUN-2 SIMPLIFIED MODELS: DM FORUM

ATLAS/CMS Dark Matter Forum:

experiment/theory discussion towards early Run-2 DM searches

Many possibilities to be used as building blocks:

This Forum will agree upon:

Prioritized set of simplified models
Common model implementation and details (e.g. matching, scales)

towards MC generation of benchmarks

- EFT validity assessment procedure

This Forum will document:

models and choices (arXiv write-up + SVN repository)

LIST OF SIMPLIFIED MODELS AND PARAMETER SCAN

- First guiding principle: how will (WIMP) DM look like?
- Further guiding principles for benchmark model choices:
 - Practical for experimentalists (MC generation)
 - Useful for theorists and DM community as a whole
- Does the kinematics change between model/model points
- Does the model add new, uncovered signatures?
 If so, we need to generate these models/model points
 If not, we give theorists sufficient information to reinterpret

Write-up: outline other benchmarks and possibilities to be investigated in future searches

EXAMPLE: JET-MET, LIST OF SIMPLIFIED MODELS Benchmark models for jet+MET searches: 1. s-channel vector/axial vector mediator 2. s-channel scalar/pseudoscalar mediator (top loop explicitly calculated)

3. t-channel colored scalar mediator

Х

х

med

JET-MET: SCAN FOR S-CHANNEL MEDIATORS

Free parameters: mediator width, couplings, m_{DM}, m_{Mediator}

- 3. DM/mediator masses:
- scan based on on/off-shell regions
- scalar and pseudoscalar grid takes into account ttbar threshold

Free parameters: mediator width, couplings, m_{DM}, m_{Mediator}

1. mediator width:

- use minimal width (no additional visible/invisible decays except for quarks and DM), for all MET+X searches - upper bound on width \rightarrow upper bound on couplings

2. couplings:

- no dependence on kinematics on coupling chirality
- cross-section scaling along lines of constant width \rightarrow fix one coupling, scan on other coupling

D. Salek's talk at DM Forum 12/03/2015

DM COMPLEMENTARITY WITH SIMPLIFIED MODELS

Suggestion from MIAPP discussion: complement DM-nucleon plots with the following plots

CONCLUSIONS

Dark Matter: extremely active topic in HEP

all researchers benefit from cross-talk for dedicated period of time

→ workshop format very useful in bringing together theorists and experimentalists (shall we try and organize one ourselves?)

Selected messages from today's talk:

- Interpretation of hints from the galaxy:
 - Non-understood excesses and interpretations exist: let's use them as guidance for searches, while still keeping the door open for non-standard-WIMP DM (model-independent)
- Details of WIMP dark matter, colliders and DD
 - Discussion of benchmarks crucial to fully exploit complementarity
 - Colliders are best suited to search for DM mediators: eagerly awaiting for Run-2!

MOST IMPORTANT LESSON LEARNED

Don't follow Dark Matter theorists to breakfast

or this will happen at 9 am:

MIAPP: Dark MALT

DARK MATTER: ASTROPHYSICAL PROBES, LABORATORY TESTS, AND THEORY ASPECTS (DARK MALT 2015)

MITP: Effective Theories and DM

BACKUP SLIDES

THEORY-EXPERIMENT INTERACTION FOR JET - MET

NLO reduces uncertainties

ATLAS 8 TeV analysis: ATLAS: arXiv:1502.01518 use NLO signals, release jet veto (but keep monojet-like topology) → improvements in EFT limits

CONTACT INTERACTION VAL	DITY: TRUNCATION (ATLAS
$\int_{\bar{q}}^{q} \int_{DM} \int_{DM} \frac{Valld If}{Q_{tr} < M_{med}}$ (minimal constraint)	Connect mediator mass and EFT scale ∧: need information on theory completion → coupling-dependent condition, precise and well-defined within choices

Operator(s)	Relation between $\rm M_{med}$ and $\rm M_{*}$	Coupling term range
D1	$M_{med} = \sqrt{y_q g_\chi} \sqrt{M_*^3/m_q}$	$0 < \sqrt{y_{ m q}g_{\chi}} < 4\pi$
C1	$\mathrm{M}_{\mathrm{med}} = y_{\mathrm{q}} \lambda_{\chi} \zeta_{\lambda} \ \mathrm{M}_{*}^{2} / \mathrm{m}_{q}$	$0 < y_{ m q} \lambda_\chi \zeta_\lambda < (4\pi)^2 \zeta_\lambda$
D5, D8, D9	$M_{med} = \sqrt{g_q g_\chi} M_*$	$0 < \sqrt{g_{ ext{q}}g_{\chi}} < 4\pi$
D11	$M_{med} = \sqrt[3]{ag_{\chi}} M_*$	$0<\sqrt[3]{ag_\chi}<\sqrt[3]{16\pi}$
C5	$M_{med} = \sqrt{a\lambda_{\chi}\zeta_{\lambda}} M_{*}$	$0 < \sqrt{a\lambda_\chi \zeta_\lambda} < 4\sqrt{\pi \zeta_\lambda}$

Key parameter for truncation: $\ R_{\rm M_{med}}^{\rm tot}$ fraction of events passing $\ Q_{\rm tr} < M_{\rm med}$

Two equivalent procedures:

cross-section truncation, corresponding only to valid events(used in 8 TeV papers) Interative rescaling of M* limits after determining R (used in 14 TeV studies)

ALTERNATIVE CI TRUNCATION

 $\sigma^{\rm signal}_{\rm true\ model}\ >\ \sigma^{\rm signal}_{\rm corresp.\ EFT} \bigg|_{E_{\rm cm} < M_{\rm cut}} \,. \label{eq:signal}$

Thus we obtain conservative but reliable limits.

Robust collider limits on heavy-mediator Dark Matter

3 / 11

arXiv:1502.01518

ALTERNATIVE CI TRUNCATION

arXiv:1502.01518

Comparison with the simplified model

• Blue line: from model-independent limit, with the identification

$$M_* = \frac{2\widetilde{m}}{g_{\text{DM}}}, \qquad M_{\text{cut}} = \widetilde{m}.$$

• Red lines: only from the resonant production of the mediator.

The EFT limit is complemented by the limit from the resonant production.

