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Santiago Ramon y Cajal
(1852-1934)

Individual cells in the brain
are spatially separate
objects

and



"Spike” Communication across Action Potential
- = ,Spike”
dynamic links (synapses)

Charge integration across cell
membrane (neurons)
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From lons to Abstraction to Electrons : Theoretical Approaches
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Developing and Tuning Neuron Models — From lons to Mathematics

Electrode ?

Input current

Prediction
Mathematical
neuron model

Measured output Model spikes
Dynamic threshold

Gerstner et al. Science 326 (2009) 379 + references therein



Adaptive-Exponential Integrate-and-Fire Neuron Model

R. Naud et al., Biol Cybern (2008) 99:335-347

www.facets-project.org



Claude Shannon 1951 : What is Information ?

I(w )=-log (w,)






Ah! Now I've done Philosophy,
I've finished Law and Medicine,
And sadly even Theology:
Taken fierce pains, from end to end.
Now here | am, a fool for sure!
No wiser than | was @fore:
Master, Doctor’s what they call me,
And I’veen ten years, already,
Crosswise, arcing, to and fro,
Leading my students(by the nose,
And see that we can know - nothing!
It almost sets my heart(byrning.









SIMULATION

mathematical
abstraction

REALITY

THEORY




Simulation (U Ziirich) M 74

©U Zirich and NASA



Biology and Computer Simulation

BlueBrain Projekt, H. Markram, EPFL

Cortical Column — 10.000 Neurons
0.000003 Watt
100.000 Watt

Mouse Brain — 100.000.000 Neurons
0.03 Watt
1.000.000.000 Watt

Human Brain — 100.000.000.000 Neurons
30 Watt

1.000.000.000.000 Watt



How much does a Neural Computation ,cost” ?
A rough (and incomplete) estimate of 2 contributions

Approx. 109 ATP molecules to be hydrolyzed for action potential

Approx. 10° ATP molecules to be hydrolyzed for synaptic transmission
D. Attwell and S. B. Laughlin

obtain 1019 Joule per ATP molecule
Bray, Dennis. Cell Movements. New York: Garland, 1992

10-10 Joule (100.000 fJ = 0.1 nJ) per action potential
10-14 Joule (10 fJ) per synaptic transmission

100 Billion neurons firing at 1 Hz : 10J/s=10 W
10> Synapses transmitting at 1 Hz : 10J/s=10W

SMALL, even realistic numbers



Electronics vs. Biology on the device level - Not a big difference !

/ Metal (300 nm times 300 nm)

Insulator (Oxide)
< 100 Atom Layers

™ Cu2/2

Semiconductor

5 Volt

4 ,7Dendrnes

,Charging” of a MOS element :
approximately 1 fJ (much less today)

Nucleus

Synaptic Transmission :
approximately 10 fJ

%. ,10 low-tech Transistors”
Synapse




The communication problem

IBM G5 Processor

(almost) twodimensional system of
,connecting wires"”

Spend typically 1000 times more energy in
wires compared to transistors (as long as
leakage currents are still small)

Energy Problem

Use this network to transport information

Architecture Problem



The Brain, Computers and
Bottom-up Synthesis

The Brain in a Computer ? Computers like Brains ?



Neural Cell = Entity on Silicon Substrate
No global Synchronization

Continuous Time

Neuromorphic Computing



Why ...... ?

Neuromorphic Systems should be ...

Low Power
Fault Tolerant
Self Organized
Fast

Compact

SO

SO

SO

SO

SO

ving t
ving t
ving t
ving t
ving t

ne energy problem
ne reliability problem
he software problem

he simulation time problem

he Size problem

of traditional computing



SIMULATION SYNTHESIS

mathematical

abstraction physical model

REALITY

THEORY




Joseph Wright of Derby
"A Philosopher giving that Lecture on the Orrery, in which a lamp is put in place of the Sun" (1766)



Quantum Emulators — Synthesize what you cannot compute

Bloch, Dalibard, Nascimbéene, Nature Physics, Vol. 8, April 2012
Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982

,Ultracold quantum gases offer a

unique setting for quantum
simulation of
. The high degree of
, the novel

and the extreme

physical that

can be reached in these

provide an exciting complementary
set-up compared with
condensed-matter systems, much in
the spirit of Feynman’s vision of a

14



What is Neuromorphic Computing ?

| | C dV (1) _
= = dt

-g (V(1)-U)

A Physical Model rather than a Mathematical Model



Continuous Time Integrating Neural Cell
Membrane Model - Neuromorphic

VAV
_ Vi)
dV 1 R 1/gleak
Cm 7 = gleak (Eleak - V) ‘ T E C
t leak m
Inherent speed
AV [V] Zieak [S] C,, [F] (gAV)/C [V/s] gap:
Biology(*) | 102 108 10-10 10° 108 Volt/second
VLSI 10! 10-6 10-13 106 — accelerated

(*) Brette/Gerstner, J. Neurophysiology, 2005

neuron model

32



From Mathematics to Electronics

A

layout drawing of two neurons: 150x20 pum?

Inpfut Neighbour-Neurons
T/ (e )
Membrane Spiking/ _, STDP/

Membrane

I Connection Network

4—

I @
]; Reset :
/S.;r;r\ Vf Spikes
In/Out \ Reset
Input dapt )

Current-Input Membrane-Output

Millner, S., Gribl, A., Meier, K., Schemmel, J., & Schwartz, M. 0. (2010). A VLSI implementation of the adaptive exponential integrate-and-fire neuron
model. In Advances in Neural Information Processing Systems (pp. 1642-1650).

v















Neural Processing Unit,
up to 200.000 Neurons, 50.000.000 plastic Synapses
Separation of Neural Circuits and Monitoring/Readout/Control

Control and /

Communication
FPGAs

Control and
Communication
Board with
digital
communication
ASICs

Neural Network >
Wafer (8 inch)

Wafer-scale integration of analog neural networks
J. Schemmel, J, Fieres and K. Meier
In : Proceedings of IICNN (2008), IEEE Press, 431



BrainScaleS HMF in Heidelberg Lab
2 Wafer System in Commissioning State
6 Wafer System to be delived in 2014



Experiments

|.  Basic dynamical properties of isolated cells and circuits
Cell firing patterns, synchronisation, stability, order-chaos

Il. Implement and test fundamental, generic concepts and theories
Liquid computing, probabilistic inference, Boltzmann machines

Ill. Biologically realistic, reverse engineered circuits in closed loops
Small brains, cortical structures, cortical columns, functional units

V. Generic neuromorphic computing outside neuroscience
Neuromorphic controllers, spatio-temporal pattern detection in
data streams, causal relations in big data, approximate computing



Expected
single cell
firing
patterns
in the 2D
phase-
space
(w,V)

Naud, R., Marcille, N.,
Clopath, C., & Gerstner, W.
(2008). Firing patterns in
the adaptive exponential
integrate-and-fire model.
Biological cybernetics,
99(4-5), 335-347.



Phase Space Scan with VLSI Neurons
(Bachelor Thesis Binh Tran, Heidelberg)



Increasing number of published applications
covering a wide spectrum of networks

Exploiting Substrate UNIVERSALITY

- Synfire chains

- Balanced random networks

- Liquid computing, temporal pattern identification
- Winner-take-all circuits

- Minicolumn L2/3 attractor networks

- Olfactory system of insects

- Barn owl echolocation, applying STDP

Pfeil, Thomas, et al. "Six networks on a universal neuromorphic computing substrate." Frontiers in neuroscience 7 (2013).

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network for generic multivariate data classification."
Proceedings of the National Academy of Sciences (2014): 201303053.

Pfeil, Thomas, et al. "Neuromorphic learning towards nano second precision." Neural Networks (IJCNN), The 2013 International Joint
Conference on Neural Networks. IEEE, 2013.



Increasing number of published applications
covering a wide spectrum of networks

Exploiting Substrate UNIVERSALITY

- Olfactory system of insects

Pfeil, Thomas, et al. "Six networks on a universal neuromorphic computing substrate." Frontiers in neuroscience 7 (2013).

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network for generic multivariate data classification."
Proceedings of the National Academy of Sciences (2014): 201303053.

Pfeil, Thomas, et al. "Neuromorphic learning towards nano second precision." Neural Networks (IJCNN), The 2013 International Joint
Conference on Neural Networks. IEEE, 2013.






3 Layer Spiking Neuron
Network derived from
Insect Olfactory System

L1I: Receptor Neurons

L Il : Decorrelation through
lateral inhibition (Glomeruli)

L Il : Association (Soft WTA
through strong inhibitory
populatuions)

Supervised Learning

Synaptic Projections from
Layer 2 to Layer 3

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network
for generic multivariate data classification." Proceedings of the National Academy of
Sciences (2014): 201303053.



Iris Dataset, First 2 Principal Components

Placement of
L Virtual
Receptors (VR)“

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network
for generic multivariate data classification." Proceedings of the National Academy of
Sciences (2014): 201303053.



Neuromorphic Network Activity
before and after Learning

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network
for generic multivariate data classification." Proceedings of the National Academy of
Sciences (2014): 201303053.



Classification Performance compared to Software
Bayesian Classifier with 5-fold cross-validation



Boring ?

Probably .....

What is (are) the Holy Grail(s) of Neuromorphic
Computing ?

- Using faulty, diverse Devices
- Real-World Applications outside Biology
- Use Learning and Plasticity
- Energy efficiency
Simulation Speed



Energy Scales

1004
1 Joule

10“J
0.1 milliJoule

108 J
10 nanoJoule

10°J
0.1 nanoJoule

104 J
10 femtoJoule

E F F I C I E N C Y

EnergyScales

Energy used for a synaptic
transmission

14 orders of magnitude difference for
,the same thing“

Physical models (Neuromorphic)

- Typically 10.000.000 times more
energy efficient than state-of-the art
HPC (comparable model)

- 10.000 less efficient than biology

From : HBP project report



. : : Accelerated
TI m escales physical model
Detection of causality 10%s 0.1s 108 s

Plasticity 1s 100 s 104s

Learning day 100 days 10's

Development year 100 years 3000 s

12 Orders of magnitude

: : . > 100
Evolution > millenia : . > month
millenia

> 15 Orders of magnitude

Temporal dynamics is key to understanding (and using) the
computational paradigms of the brain



2011 EDITION : EMERGING RESEARCH DEVICES, Chapter 5.3

The appeal of neuromorphic architectures lies in

i) their potential to achieve (human-like) intelligence based on unreliable devices
typically found in neuronal tissue

i) their strategies to deal with anomalies, emphasizing not only tolerance to noise and
faults, but also the active exploitation of noise to increase the effectiveness of
operations

iii) their potential for low-power operation.

Traditional von Neumann machines are less suitable with regard to item i), since for this
type of tasks they require a machine complexity (the number of gates and computational
power), that tends to increase exponentially with the complexity of the environment (the
size of the input). Neuromorphic systems, on the other hand, exhibit a more gradual
increase of their machine complexity with respect to the environmental complexity.

Therefore, at the level of human-like computing tasks, neuromorphic machines have the
potential to be superior to von Neumann machines.



Fixed Pattern Noise in the
Neuromorphic Glomeruli Populations

Projection Neurons Local Inhibitors

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network
for generic multivariate data classification." Proceedings of the National Academy of
Sciences (2014): 201303053.



Generic Data Mining with a biologically derived
Neuromorphic System

Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A neuromorphic network
for generic multivariate data classification." Proceedings of the National Academy of
Sciences (2014): 201303053.






The Human Brain Project

More than 3
years effort of
thinking and
planning, leading
to a detailed
700 page
proposal

A coordinated effort to
understand, improve and
exploit the brain

Information and Public Report :
www.humanbrainproject.org

* Project Selection : January 2013
* Approval of 30 months ramp-up
e Starting date : October 15, 2013
* Project Size : 80 Partners

* |nitial EU Contribution : 54 M€



The six Platforms in HBP

1.

2.

Neuroinformatics Platform
Aggregate neuroscience data, deliver brain atlases

Medical Informatics Platform
Aggregate clinical records, classify brain diseases

Brain Simulation Platform
Derive brain models, run closed loop brain simulations

High Performance Computing Platform
Develop and operate HPC systems optimized for brain simulations

Neuromorphic Computing Platform
Develop and operate novel brain derived computing hardware

Neurorobotics Platform
Develop virtual robotic systems for closed loop cognitive experiments



Robert Oppenheimer and John von Neumann
Institute for Advanced Study, Princeton, 1952



HBP : Two complementary
neuromorphic computing concepts

MANY-CORE DIGITAL PROCESSOR SYSTEM

Many clocked digital ARM processors — address-based,
small packet, asynchronous low density communication
— effectively running at biological real-time

PHYSICAL MODEL MIXED SIGNAL SYSTEM

Many analogue computing elements with physical time
constants — binary, asynchronous, continuous time,

high density communication —
effectively running at x10.000 biological real-time



The Physical Model Machine

Neuromorphic Physical Model (NM-PM-1)

20
Neuronal Network Wafer
20 Peta-Connections/s

15
Thit/s

4 Million Neurons
1 Billion Synapses

1000 Kintex FPGAs

Conventional
Computing Cluster
4 Tflop/s

1 Tbit/s

20 Intel Haswell






,Reducing Complexity — How far can we go ?“

Circuit Building, Complexity
Integrated Data —>  Simulation, —> Reduction and
Visualisation Export
Robotic

<> Execute on NCS —

Environment
Cognition Theorie

. <> . Exploit Configurability !
Behavior new Paradigms Search the Parameter Space

Timescales from ms to years




BRAIN-DERIVED COMPUTING

» Consistent concept for a novel non-von Neumann, non-
Turing computer architecture

» Accessible to available technologies (CMOS) and
attractive application for future component technologies

(nanoelectronics)

» Key features : Universality, scalability, fault tolerance,
power efficiency, speed, learning

» Accelerated operation : Only known approach to bridge all
timescales relevant for circuit dynamics

» Important next step : Give up simulation as a reference,
exploit device mismatch and noise






