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Abstract

X-ray transition radiation produced by a relativistic charge crossing the

interface between media is considered in terms of the energy loss against

additional electric field induced in the vicinity of the interface. X-ray

transition radiation in a plate, in a stack of plates, and in complex

radiators consisting more than two media are considered in details. The

comparison of Geant4 simulation with experimental data is discussed.
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1 X-ray Transition Radiation Energy Loss

X-ray transition radiation (XTR) is widely used in experimental high energy

physics for particle identification, especially for the selection of electrons in an

environment of high hadron background. The standard theory of XTR

describes the flux of XTR photons far from the XTR radiator in the so called

wave zone. This is not the case when the XTR detector is placed directly inside

the radiator (see, for example, the design of the XTR tracker of the ATLAS

experiment). For such a radiator geometry including more than two media

other versions of the XTR theory may be applied, e.g., those based on the

calculation of XTR energy loss. Our main goal is to describe the XTR energy

loss produced by a relativistic charged particle crossing different geometries of

the media interfaces against additional electric field induced near the interfaces.

The XTR energy loss provides the spectrum and angular distribution of XTR

photons emitted in the vicinity of the particle trajectory. We will describe the

X-ray transition radiation energy loss taking into account the absorption of

XTR photons in all media involved.
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Let a charge e, moving with the constant velocity v along the direction of unit

vector n (v = vn), cross the interface between two media with dielectric

permittivities ε1 and ε2, respectively. The part of the total mean work done by

the charge against the field produced by itself resulting in the emission of XTR

photons, ∆̄
(12)
⊥ , can be expressed as:

∆̄
(12)
⊥ = −e

Z ∞

−∞

E⊥(vt, t)vdt = δW12 + U2,

where E⊥(vt, t) is the additional electric field produced by the charge in its

current position r = vt near interface, δW12 is the energy of macroscopic mass

renormalisation when the charge crosses the interface from the first medium to

the second one (it reflects the fact that a charged particle in a medium

possesses a different mass from that in vacuum), and U2 is the field energy of

XTR photons in the second medium. The index ⊥ means that we consider the

part of the electric field perpendicular to the direction k of the emitted XTR

photon, so that relation describes the energy loss due to transverse

electro-magnetic excitations of a medium (photons in a medium).
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Figure 1: Diagram of a charged particle crossing the single interface be-

tween two absorbing media.
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We will limit our consideration to the ultra-relativistic case (v ∼ c, where c is

the speed of light in vacuum), when XTR is emitted forward (to the second

medium) at small angles (∼ 1/γ, where γ � 1 is the particle Lorentz factor)

around the direction of the charge motion n (v = vn). To describe the energy

loss in terms of the field energy of XTR photons, U , we have to reduce the

energy of the macroscopic mass renormalisation. To do that we consider the

energy loss when the charge crosses the intersection between the second and the

first media moving with the same velocity in opposited direction:

∆̄
(21)
⊥ = δW21 + U1.

It is obviously that δW12 + δW21 = 0 and in the X-ray region U1 ∼ U2 ∼ U ,

since ε1 ∼ ε2 ∼ 1. As a result, we obtain:

U =
∆̄

(12)
⊥ + ∆̄

(21)
⊥

2
.

For the definition of the energy-angle distribution of the XTR photons we

expand the electric field in the Fourier integral (no 2π factors!):

E⊥(r, t) =

ZZ

dω dkE⊥(k, ω) exp [i(kr− ωt)], E⊥(k, ω)k = 0,
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where k and ω are the wave vector and the frequency of the XTR photon,

respectively. Then relation for XTR energy loss will be:

∆̄
(12)
⊥ = −ev

Z ∞

−∞

dω

Z

dkE
(12)
n⊥ (k, ω)

Z ∞

−∞

dt exp [it(kv − ω)] =

= −2πev

Z ∞

−∞

dω

Z

dkE
(12)
n⊥ (k, ω)δ(ω − kv),

where E
(12)
n ⊥ (k, ω) is the component of E⊥(k, ω) parallel to the direction of the

charge motion n, and δ is the Dirac delta function. The latter will be used to

find the integral with respect to the module of the wave vector k:

Z

dk = 2π

Z ∞

0

k2dk

Z 0

−1

d cos θ +

Z 1

0

d cos θ

ff

,

where θ is the angle between n and k. One can see that the delta function

connects the signs of ω and cos θ. Therefore the integrals with respect to ω and

cos θ are divided into two regions where both ω and cos θ have the same sign.
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After reducing the integration with respect to the frequency to the physical

region, ω ≥ 0 and with respect to cos θ over the forward hemisphere, relation

for XTR-dEdx becomes:

∆̄
(12)
⊥ = −4π2e v

Z ∞

0

dω

Z 1

0

d cos θ

Z ∞

0

k2d k
n

E
(12)
n ⊥ (k, ω)δ(ω − kv)+

+ E
(12)
n⊥ (k,−kv,−ω)δ(−ω + kv)

o

.

In the X-ray region the main contribution to the integral with respect to cos θ

will be from θ ∼ 0. Therefore we can make the substitution 2(1 − cos θ) ∼ θ2

and change the upper limit for the integration with respect to θ2 to be infinity,

since the main contribution to the integral will be from the region of θ � 1. In

addition, the integration with respect to k results in k = ω/v cos θ ∼ ω/c and

appearance of a factor from the delta function, 1/v cos θ ∼ 1/v. Therefore, the

energy-angle distribution of the energy loss will be:

d2∆̄
(12)
⊥

~dω dθ2
= −2π2e

~

“ω

c

”2 n

E
(12)
n ⊥ (k, ω) + E

(12)
n ⊥ (−k,−ω)

o

, kv = ω.

Here we introduced the XTR photon energy, ~ω, where ~ is Planck’s constant.
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It is obvious that E
(12)
n⊥ (−k,−ω) = E

(12)∗
n⊥ (k, ω), where ∗ means the complex

conjugation operation. The energy-angle distribution of the emitted energy of

the XTR photons is then:

d2U

~dω dθ2
= −2π2e

~

“ω

c

”2

Re
n

E
(12)
n⊥ (k, ω) + E

(21)
n ⊥ (k, ω)

o

.

Averaging over the forward and backward directions of motion is needed for an

odd number of interfaces of particular type only (12,21,12). If the number of

interfaces is even, as, for example, for a number of plates of the second medium

placed in different positions in the first medium, it is enough to consider the

XTR energy loss for the forward direction of motion only. In particular, for one

plate the energy-angular distribution of the emitted energy of the XTR photons

reads (12,21):

d2U

~dω dθ2
= −4π2e

~

“ω

c

”2

Re
n

E
(121)
n ⊥ (k, ω)

o

, × 1

(2π)4
.
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The same results follow from our general consideration:

∆̄⊥ =
2

1

Z ∞

0

dω

Z

K3

dkRe{j∗(k, ω) · E⊥(k, ω)}, ×(2π)4.

For uniform motion with constant velocity v = vn the current density reads:

j(k, ω) = 2πevδ(ω − k · v), dk = 2πk2dk sin θ dθ = πk2dk dθ2,

δ(...) → 1

v cos θ
∼ 1

v
, k2 → ω2

v2 cos2 θ
∼ ω2

c2
.

Therefore we have for the energy-angular distribution of the emitted energy of

the XTR photons:

d2∆̄⊥

~dω dθ2
= −4π2e

~

“ω

c

”2

Re {En ⊥(k, ω)}.

These relations will be used in the next section for the calculation of the XTR

energy loss for different geometries of the medium interfaces.
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2 Single Interface between Media

For simplicity, we consider the case when the first and second media are located

in semi spaces z < 0 and z > 0, respectively, and the charge moves along the z

axis (r(t) = vt = {0, 0, vt}). We start with equation for electric field in space

time domain (using ε, ε⊥ representation):

(Ampere-Maxwell):∇× B − 1

c

∂D

∂t
=

4π

c
j,

(Gauss):∇ · D = 4πρ, ∇× E = −1

c

∂B

∂t
:(Faradey),

with D⊥ = ε̂⊥E⊥ and D‖ = ε̂E‖. We limit our consideration by the case of

high frequencies ~ω > IK , where IK is the binding energy of K-shell. In this

frequency region ε⊥ ∼ ε = 1 − ω2
p/ω2. We get the time derivative of

Ampere-Maxwell law:

∇× ∂B

∂t
− 1

c

∂2D

∂2t
=

4π

c

∂j

∂t
,
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Figure 2: Some notations for the treatment of single interface between

media, r = (ρ, z) and k = (q, κ).
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−c∇× (∇× E) − 1

c

∂2D

∂2t
=

4π

c

∂j

∂t
, ∇× (∇× E) = ∇(∇ · E) − ∆E,

−∇(∇ · E) + ∆E − 1

c2

∂2D

∂2t
=

4π

c2

∂j

∂t
.

The value ∇ · E is defined from the Gauss law:

∇ · (ε̂E) = ε̂∇ · E + (∇ε̂) · E = 4πρ,

∆E − 1

c2

∂2ε̂E

∂2t
=

4π

c2

∂j

∂t
+ ∇

˘

ε̂−1 [4πρ − (∇ε̂) · E]
¯

.

Let us consider the case when ε̂ does not depend explicitly on r and t in

semi-spaces z < 0 and z > 0, having however in there the different values ε1 and

ε2, respectively.

∆E − ε̂

c2

∂2E

∂2t
=

4π

c2

∂j

∂t
+ 4πε̂−1∇ρ.
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Since the dielectric properties are different in z < 0 and z > 0, we will define

firstly the intermediate Fourier components of the electric field:

E(q, z, ω) =

Z

dρ

(2π)2

Z ∞

−∞

dt

2π
E(ρ, z, t) exp [−i(ρq − ωt)],

where ρ and q are the components of the vectors r and k in the xy-plane

respectively (r = (ρ, z) and k = (q, κ), where κ is the component of k along

the z axis). The total (particle and induced) fields E(j)tot(q, z, ω) satisfy by the

following equations in each medium (j = 1, 2):

∂2E(j)tot

∂2t
− q2

E
(j)tot + εj

ω2

c2
E

(j)tot =

= −4π
iω

c2
j(q, z, ω) +

4π

εj



iqρ(q, z, ω),
∂ρ(q, z, ω)

∂z

ff

,

ρ(q, z, ω) =

Z Z

dρ dt

(2π)3
eδ(ρ)δ(z − vt) exp [i(ωt − ρ · q)] =

e

(2π)3v
exp

h

i
ω

v
z

i

,

j(q, z, ω) =
ev

(2π)3v
exp

h

i
ω

v
z

i

,
∂ρ(q, z, ω)

∂z
= i

ω

v
ρ(q, z, ω).
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And the field equations finally read:

∂2E(j)tot

∂z2
+ ζ2

j E
(j)tot = A

(j) exp
“

i
ω

v
z

”

,

where (β = v/c):

ζ2
j = εj

ω2

c2
− q2, A

(j) =
ie

2π2vεj

n

q,
ω

v
(1 − εjβ

2)
o

,

The (just math) solution in both media can be represented as:

E
(1)tot = E

(1) exp (−iζ1z) − B
(1) exp

“

i
ω

v
z

”

,

E
(2)tot = E

(2) exp (iζ2z) − B
(2) exp

“

i
ω

v
z

”

,

it is the sum of general with A = 0 and particular (particle field) solutions,

where

B
(j) =

A(j)

ω2

v2
− ζ2

j

.
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Here E(j) are the amplitudes of the additional transverse electromagnetic

radiation fields expanding from the plane z = 0. These amplitudes can be

derived from the boundary conditions for the total electric fields E(j)tot:

ε1E
(1)tot
n = ε2E

(2)tot
n , E(1)tot

τ = E(2)tot
τ , q = qτ ,

where τ is the unit vector in the xy-plane, and transverse conditions for the

transition radiation fields:

(∇ · E(j) = 0) → : (q − ζ1n)E(1) = 0, (q + ζ2n)E(2) = 0.

In the ultra-relativistic case, when γ = (1 − β2)−1/2 � 1, the main part of the

transition radiation is emitted in the X-ray region and within small θ ∼ γ−1.

This means that the main contribution to the emitted XTR energy will be from

E
(2)
n . Note that the terms proportional to B(j) will contribute to Cherenkov

radiation mainly in the spectral ranges where Re{εj} > 1, which is not the case

for the X-ray region. We will use the standard (in XTR theory) representation

of the dielectric permittivities:

εj = 1 − ω2
j

ω2
+ i

c

ωlj
,
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where ωj and lj are the plasma frequency and the photon absorption length in

the j-th medium, respectively. In the region of small emission angles, and

taking into account that for straight trajectory ω = kv, we have:

cos θ ∼ 1 − θ2

2
, β2 ∼ 1 − γ−2, k ∼ κ ∼ ω

v
∼ ω

c
, q ∼ ω

c
θ,

ω2

v2
− ζ2

j ' ω

cZj
, ζj −

ω

v
' − 1

2Zj
,

A
(j) ' A



ω

c
θτ ,

1

Zj
− ω

c
θ2

ff

, A =
ie

2π2c
,

where we introduce the complex formation zone, Zj , of X-ray transition

radiation in the j-th medium:

Zj =
Lj

1 − i
Lj

lj

.

V. Grichine X-ray Transition radiation



X-ray Transition Radiation 17

In the case of a transparent medium l = ∞, the complex formation zone is

reduced to the coherence length Lj of XTR:

Lj =
c

ω

»

γ−2 +
ω2

j

ω2
+ θ2

–−1

.

Note that Zj(−ω) = −Z∗
j (ω), since Im{εj(−ω)} = −Im{εj(ω)}. With this

notation the transverse conditions will be transformed to:

E(1)
τ =

E
(1)
n

θ
, E(2)

τ = −E
(2)
n

θ
,

and the boundary conditions will give:

n : E(1)
n + Aθ2Z1 = E(2)

n + Aθ2Z2,

τ : E(1)
n − Aθ2Z1 = −E(2)

n − Aθ2Z2.

Subtraction of these relations results in:

E(2)
n (q, ω) =

ie

2π2c
θ2(Z1 − Z2), while, if summation, E(1)

n = 0.
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The corresponding Fourier transformation E
(2)
n (k, ω) of E

(2)
n (q, ω) exp(iζ2z) will

be:

E(2)
n (k, ω) =

Z ∞

0

dz

2π
E(2)

n (q, ω) exp [i(ζ2 − κ)z] =
eθ2

2π3c
Z2(Z1 − Z2).

The latter relation clearly shows that E
(2)
n (k, ω) depends on ω by Z only.

Therefore we have:

E(2)
n (−k,−ω) =

eθ2

2π3c
Z∗

2 (Z∗
1 − Z∗

2 ) = E(2)∗
n (k, ω).

The total work done by the charge against the radiation field E
(2)
n (k, ω)

expanding to the second medium will be now:

∆̄
(12)
⊥ = − e2

πc

Z ∞

0

dω

Z ∞

0

dθ2
“ω

c

”2

θ2Re {Z2(Z1 − Z2)} .

Combining the latter equation with the similar expression for:

∆̄
(21)
⊥ = − e2

πc

Z ∞

0

dω

Z ∞

0

dθ2
“ω

c

”2

θ2Re {Z1(Z2 − Z1)} .

Z2(Z1 − Z2) + Z1(Z2 − Z1) = −(Z1 − Z2)
2,
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one gets the final result for the energy-angle distribution of emitted XTR

energy:

d2U

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
˘

(Z1 − Z2)
2¯

,

where α is the fine structure constant (we consider for simplicity the particle

charge e to be equal to the electron charge). One can see that in absorbing

media the emitted XTR energy is defined by the real part of the square of the

difference of the medium complex formation zones. In transparent media this

relation reduces to

d2U

~dω dθ2
=

α

π

“ω

c

”2

θ2(L1 − L2)
2 =

α

π

“ω

c

”2

θ2|L1 − L2|2,

in accordance with the standard theory. For the energy-angle distribution of

the mean number of emitted XTR photons we have, by definition,

d2N̄

~dω dθ2
=

1

~ω

d2U

~dω dθ2
=

α

π~c2
ωθ2Re

˘

(Z1 − Z2)
2¯

.
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3 Detector Window

Let us consider a relativistic charge crossing two interfaces between the first

and second media (z = 0) and between the second and the third media (z = a),

respectively. Such a configuration is realised, for example, when the charge

enters an XTR gaseous detector (the third medium in this case will be the

detector gas mixture). The electric fields will be the following:

E
(1) exp (−iζ1z) − B

(1) exp
“

i
ω

v
z

”

,

E
(2) exp (iζ2z) + E

(3) exp (−iζ2z) − B
(2) exp

“

i
ω

v
z

”

,

E
(4) exp (iζ3z) − B

(3) exp
“

i
ω

v
z

”

,

in the first, second and third media, respectively.
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Figure 3: Diagram of a charged particle crossing a detector window 1-2-3.
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Note that, since the second medium is limited from both sides, the radiation

fields can expand there in both directions along the z-axis. The transverse

conditions will be:

E(2k−1)
τ =

E
(2k−1)
n

θ
, E(2k)

τ = −E
(2k)
n

θ
, k = 1, 2.

The boundary conditions at the z = 0 read:

n : E(1)
n + Aθ2Z1 = E(2)

n + E(3)
n + Aθ2Z2,

τ : E(1)
n − Aθ2Z1 = −E(2)

n + E(3)
n − Aθ2Z2.

From these equations we have again for E
(2)
n :

E(2)
n (q, ω) = Aθ2(Z1 − Z2), (A =

ie

2π2c
).

The boundary conditions at z = a read:

n : E(3)
n exp(−iζ2a) + E(2)

n exp(iζ2a) + Aθ2Z2 exp
“

i
ω

v
a

”

=

= E(4)
n exp(iζ3a) + Aθ2Z3 exp

“

i
ω

v
a

”

,
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τ : E(3)
n exp(−iζ2a) − E(2)

n exp(iζ2a) − Aθ2Z2 exp
“

i
ω

v
a

”

=

= −E(4)
n exp(iζ3a) − Aθ2Z3 exp

“

i
ω

v
a

”

.

The subtraction of these relations results in E
(4)
n being given by:

E(4)
n (q, ω) = Aθ2(Z1 − Z2)H2(a)H3(−a) + Aθ2(Z2 − Z3)H3(−a),

where we introduce the convenient function Hj(z):

Hj(z) = exp
h

i
“

ζj −
ω

v

”

z
i

' exp

»

− iz

2Zj

–

=

= exp

„

− z

2λj

« »

cos

„

z

2Lj

«

− i sin

„

z

2Lj

«–

,

with the following obvious properties:

Hj(z1)Hj(z2) = Hj(z1 + z2), exp [i (ζj − ζk) z] = Hj(z)Hk(−z).
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The Fourier image of the n-component of the radiation fields, expanding along

the z-axis, reads:

E(123)
n (k, ω) =

Z a

0

dz

2π
E(2)

n (q, ω)H2(z) +

Z ∞

a

dz

2π
E(4)

n (q, ω)H3(z) =

=
2Aθ2

2πi
{Z2(Z1 − Z2) [1 − H2(a)] + Z3(Z1 − Z2)H2(a) + Z3(Z2 − Z3)}.

Taking half of the sum of the latter relation with E
(321)
n (k, ω), with the

substitution 1 � 3 one gets, for the energy-angular distribution of the emitted

XTR energy,

d2U (123)

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
n

R(123)
o

,

where the factor R(123) reflects the interference of contributions from different

interfaces between media:

R(123) = (Z1 − Z2)
2 + (Z2 − Z3)

2 + 2(Z1 − Z2)(Z2 − Z3)H2(a).
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Figure 4: Diagram of a charged particle crossing the plate of medium 2 in

the medium 1. Both media are considered to absorbing.
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Let us consider limiting cases. If the second and the third media are identical,

or a = 0, these relations are reduced to the expression describing the geometry

with one interface. In the case that the first and the third media are identical,

the expression for R(123) will be transformed to:

R(121)
a = 2(Z1 − Z2)

2[1 − H2(a)] = 2(Z1 − Z2)
2

»

1 − exp

„

− ia

2Z2

«–

.

The latter equation corresponds to a plate of the second medium with thickness

a placed in the first medium. Note the presence of an additional factor of 2

which reflects the even number of interfaces.

In transparent media the latter relation becomes:

R(121)
a = 4|L1 − L2|2 sin2

„

a

4L2

«

,

in accordance with the standard theory.
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In the limit of very thick plate we have

R(121)
a→∞ = 2(Z1 − Z2)

2.

It can be considered as XTR from two independent single interfaces between

the first and the second media. Therefore the energy-angular distribution of

XTR from a single interface reads:

d2U (12)

~dω dθ2
=

d2U (21)

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
˘

(Z1 − Z2)
2¯

,
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Figure 5: Diagram of a charged particle crossing a thin detector with media

1-2-3-2-1.
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We now consider the geometry of a thin detector, when the charge serially

crosses the interfaces 1-2 at z = 0, 2-3 at z = a, 3-2 at z = a + b, and 2-1

at z = 2a + b. Repeating the above considerations one gets:

d2U (12321)

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
n

R(12321)
o

,

R(12321) = 2
˘

(Z1 − Z2)
2[1 − H2(2a)H3(b)] + (Z2 − Z3)

2[1 − H3(b)]+

+ 2(Z1 − Z2)(Z2 − Z3)H2(a)[1 − H3(b)]}.
In the case of b = 0 or a = 0 the latter equation will be reduced to the case of a

plate of the second medium with thickness 2a or a plate of the third medium

with thickness b, respectively, placed in the first medium:

R
(12321)
b=0 = R121

2a = 2(Z1 − Z2)
2[1 − H2(2a)],
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Figure 6: Diagram of a charged particle crossing the thin detector like

straw tube. The particle crosses the interfaces; 1-2, 2-3, 3-2, 2-1.
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R
(12321)
a=0 = R131

b = 2(Z1 − Z3)
2[1 − H3(b)].

The same result will be, if the second and the third media are identical, namely,

R(12221) = R121
2a+b. In the case of b → ∞, this relation will describe the

independent contribution from two detector windows:

R
(12321)
b→∞ = 2R(123) = 2[(Z1 − Z2)

2 + (Z2 − Z3)
2 + 2(Z1 − Z2)(Z2 − Z3)H2(a)].

If the first and the third media are identical, R(12321)-relation will be reduced to

the case of two plates of the second medium with thickness a placed in the first

medium with the gap equal to b:

R(12121) = 2(Z1 − Z2)
2[2 − H1(b) − 2H2(a) + 2H1(b)H2(a) − H1(b)H

2
2 (a)].

Note that this relation can be applied to the description of metallic foils (Li,Be)

when oxidation of surface layers is taken into account. It can also be applied to

the description of dielectric foils covered with metallic layers.
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4 The Most General Radiator

Let us consider a relativistic charge crossing n − 1 interfaces between n > 2

different media located at arbitrary points z = zj , (j = 1, 2, . . . , n). The electric

fields will be the following:

E
(1) exp (−iζ1z) − B

(1) exp
“

i
ω

v
z

”

,

E
(2k−2) exp (iζkz) + E

(2k−1) exp (−iζkz) −B
(k) exp

“

i
ω

v
z

”

, (k = 2, . . . , n − 1),

E
(2n−2) exp (iζnz) − B

(n) exp
“

i
ω

v
z

”

,

in the first, internal and last media, respectively. Note that, since the internal

media (k = 2, . . . , n − 1) are limited from both sides, the radiation fields can

expand in both directions along the z-axis. The transverse conditions will be:

E(2k−1)
τ =

E
(2k−1)
n

θ
, E(2k)

τ = −E
(2k)
n

θ
, k = 1, 2, . . . , n − 1.
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Figure 7: Diagram of a charged particle crossing the most general XTR

radiator consisting of n media and n − 1 interfaces between them. The

medium thicknesses can fluctuate separately as described by the Hk (k =

2, 3, . . . , n − 1) values.
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The boundary conditions at the z = z1, read:

n : E(1)
n exp(−iζ1z1) + Aθ2Z1 exp

“

i
ω

v
z1

”

=

= E(2)
n exp(iζ2z1) + E(3)

n exp(−iζ2z1) + Aθ2Z2 exp
“

i
ω

v
z1

”

,

τ : E(1)
n exp(−iζ1z1) − Aθ2Z1 exp

“

i
ω

v
z1

”

=

= −E(2)
n exp(iζ2z1) + E(3)

n exp(−iζ2z1) − Aθ2Z2 exp
“

i
ω

v
z1

”

.

From these equations we have again for E
(2)
n (as for the plate case):

E(2)
n (q, ω) = Aθ2(Z1 − Z2)H2(−z1), (A =

ie

2π2c
),
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where we introduce (as for the plate case) the convenient function Hj(z):

Hj(z) = exp
h

i
“

ζj −
ω

v

”

z
i

' exp

»

− iz

2Zj

–

=

= exp

„

− z

2lj

« »

cos

„

z

2Lj

«

− i sin

„

z

2Lj

«–

,

with the following obvious properties:

Hj(z1)Hj(z2) = Hj(z1 + z2), exp [i (ζj − ζk) z] = Hj(z)Hk(−z).

The boundary conditions at z = zk−1, k = 3, . . . , n − 1 read:

n : E(2k−3)
n exp(−iζk−1zk−1)+E(2k−4)

n exp(iζk−1zk−1)+Aθ2Zk−1 exp
“

i
ω

v
zk−1

”

=

= E(2k−2)
n exp(iζkzk−1) + E(2k−1)

n exp(−iζkzk−1) + Aθ2Zk exp
“

i
ω

v
zk−1

”

,

τ : E(2k−3)
n exp(−iζk−1zk−1)−E(2k−4)

n exp(iζk−1zk−1)−Aθ2Zk−1 exp
“

i
ω

v
zk−1

”

=

= −E(2k−2)
n exp(iζkzk−1) + E(2k−1)

n exp(−iζkzk−1) − Aθ2Zk exp
“

i
ω

v
zk−1

”

.
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The boundary conditions at z = zn−1 read:

n : E(2n−3)
n exp(−iζn−1zn−1)+E(2n−4)

n exp(iζn−1zn−1)+Aθ2Zn−1 exp
“

i
ω

v
zn−1

”

=

= E(2n−2)
n exp(iζnzn−1) + Aθ2Zn exp

“

i
ω

v
zn−1

”

,

τ : E(2n−3)
n exp(−iζn−1zn−1)−E(2n−4)

n exp(iζn−1zn−1)−Aθ2Zn−1 exp
“

i
ω

v
zn−1

”

=

= −E(2n−2)
n exp(iζnzn−1) − Aθ2Zn exp

“

i
ω

v
zn−1

”

.

The step-by-step subtraction of these relations results in

E
(2k−2)
n (k = 3, . . . , n) being given by:

E(2k−2)
n (q, ω) = Aθ2Hk(−zk−1)

"

(Zk−1 − Zk) +

k−2
X

i=1

(Zi − Zi+1)

k−1
Y

j=i+1

Hj(aj)

#

,

where ak = zk − zk−1, (k = 2, . . . , n − 1) is the thickness of the k-th medium.
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The Fourier image of the n-component of the radiation fields, expanding along

the z-axis, reads:

E(1,...,n)
n (k, ω) =

n−1
X

k=2

Z zk

zk−1

dz

2π
E(2k−2)

n (q, ω)Hk(z)+

Z ∞

zn−1

dz

2π
E(2n−2)

n (q, ω)Hn(z) =

= − eθ2

2π3c

(

n−1
X

k=2

[Hk(ak) − 1] Zk

"

(Zk−1 − Zk) +

k−2
X

i=1

(Zi − Zi+1)

k−1
Y

j=i+1

Hj(aj)

#

−

−Zn

"

(Zn−1 − Zn) +

n−2
X

i=1

(Zi − Zi+1)

n−1
Y

j=i+1

Hj(aj)

#)

.

Taking half of the sum of the latter relation with E
(n,...,1)
n (k, ω), with the

substitution k � n − k + 1, (k = 1, . . . , n), one gets, for the energy-angle

distribution of the emitted XTR energy,

d2U (1,...,n)

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
n

R(1,...,n)
o

,
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Figure 8: Contribution of correlation between (i)− (i+1) and (k)− (k+1)

interfaces to R(1,...,n).
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where the factor R(1,...,n) reflects the interference of contributions from different

interfaces between media:

R(1,...,n) =

n−1
X

i=1

(Zi − Zi+1)
2 + 2

n−1
X

k=2

(Zk − Zk+1)

k−1
X

i=1

(Zi − Zi+1)
k

Y

j=i+1

Hj(aj).

These relations describe the energy-angle distribution of XTR photons emitted

inside the most general XTR radiator consisting of arbitrary number n > 2 of

different media with arbitrary thicknesses. One can see that the functions Hj

have the physical meaning of correlation functions describing the interference

between contributions from different interfaces.

Let us consider limiting cases. If n = 3 and the second and the third media are

identical, or a2 = 0, the general relations are reduced to the expression

describing the geometry with one interface. In the case that the first and the

third media are identical, the expression will be transformed to:

R(121)
a2

= 2(Z1 − Z2)
2[1 − H2(a2)] = 2(Z1 − Z2)

2

»

1 − exp

„

− ia2

2Z2

«–

.
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5 Models of Random Radiator Stack

In radiators based on foam or a fiber stack with inserted XTR detectors (straw

tubes), XTR is measured from particles crossing different sets of the gap

thicknesses. Since each gap contributes to the energy-angle distribution of the

emitted XTR energy as not more than one H-factor, averaging over

independently fluctuating gap thicknesses (for simplicity, we do not consider

constrains due to finite radiator thickness) results in an expression for

〈R(1,...,n)〉:

〈R(1,...,n)〉 =

n−1
X

i=1

(Zi − Zi+1)
2 + 2

n−1
X

k=2

(Zk − Zk+1)

k−1
X

i=1

(Zi − Zi+1)

k
Y

j=i+1

Hj ,

where Hj (j = 2, . . . , n − 1) are correlation functions averaged over the

thickness distributions pj(z):

Hj = 〈Hj(z)〉 =

Z ∞

0

dz pj(z) exp

»

− iz

2Zj

–

,

„Z ∞

0

dz pj(z) = 1

«

.
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Since the thicknesses of plates and gas gaps are positive and the Hj have

exponential forms, it is convenient to represent the distribution pj(z) in the

form of the Gamma distribution:

pj(z) =

„

νj

z̄j

«νj zνj−1

Γ(νj)
exp

»

−νjz

z̄j

–

,

where Γ is the Euler gamma function, z̄j is the mean thickness of the j−th

medium in the radiator and νj > 0 is a parameter which roughly describes the

relative thickness fluctuations. In fact, the relative thickness fluctuation δj

reads:

δj =

p

〈(zj − z̄j)2〉
z̄j

= ν
−1/2
j , (j = 1, 2).

Then one can derive analytically the values Hj . For example, in the general

case of a gamma-distributed radiator:

Hj =

»

1 + i
z̄j

2Zjνj

–−νj

.
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This equation allows us to calculate the factor R(1,...,n) analytically and hence

evaluate the energy-angle distribution of emitted XTR photons in a wide set of

radiators with fluctuating gap thicknesses. For radiators with small

irregularities, when νj > 100, the direct calculation results in numerical

instabilities and is time consuming. In this case the Gaussian distribution can

be used for the averaging of the functions:

pj(z) =
1

σj

√
2π

exp

»

− (z − z̄j)
2

2σ2
j

–

,

where σj are the root-mean-squared fluctuations of the thickness in the j-th

medium. Then for σj � z̄j :

Hj = exp

»

− iz̄j

2Zj
− σ2

j

8Z2
j

–

= Hj(z̄j) exp

»

− σ2
j

8Z2
j

–

,

where Hj(z̄j) corresponds to the case of the regular radiator

( pj(z) = δ(z − z̄j) ). In transparent media the second factor, exp(−σ2
j /8Z2

j ),

provides the numerical stability of the calculations.
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6 Multiple Stacks of Plates

In practice, XTR is generated by special radiators consisting of a stack of foils

(plastics like polypropylene or mylar) with gas gaps or a foam. Suppose we

have n foils of the first medium (index 1) with thicknesses ak, k = 1, ..., n

interspersed with gas gaps of the second medium (index 2) with thicknesses bk,

k = 1, ..., n − 1. The relativistic charge serially intersects the sequence of gaps:

a1, b1, a2, b2, . . . , bk−1, ak, bk, . . . , bn−1, an.

Calculations similar to those considered in the previous sections result in the

following expression for the energy-angle distribution of the emitted XTR

energy:

d2U (n)

~dω dθ2
=

α

π

“ω

c

”2

θ2Re
n

2(Z1 − Z2)
2R(n)

o

,
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Figure 9: Diagram of a charged particle crossing a typical XTR radiator

consisting of n foils of the first medium interspersed with gas gaps of the

second medium. The foil and gas gap thicknesses can fluctuate separately

as described by the H1 and H2 values.
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where the stack factor R(n) can be represented as a sum of the contributions Pk

from different plates in the stack:

R(n) =

n
X

k=1

Pk,

n
X

k=0

xk =
1 − xn

1 − x
,

Pk = [1 − H1(ak)]{1 − [1 − H1(a1)]H2(b1)H1(a2) . . . H1(ak−1)H2(bk−1)−

−[1 − H1(a2)]H2(b2)H1(a3) . . . H1(ak−1)H2(bk−1)−

− · · · − [1 − H1(ak−1)]H2(bk−1)}.
These relations describe the spectrum of XTR emitted inside any general stack

of n plates, where the thicknesses of the plates and gas gaps can be arbitrary

(but fixed). They can be powerful for the determination of the optimal

sequence of given XTR radiator materials for different experimental tasks of

particle identification.

V. Grichine X-ray Transition radiation



X-ray Transition Radiation 46

Let us consider the particular case when the thicknesses of all plates and gas

gaps are equal to a and b, respectively. Calculating above expression for

different n and using mathematical induction or performing direct algebra

transformations one can obtain:

R(n) = n
[1 − H1(a)][1 − H2(b)]

1 − H1(a)H2(b)
+

[1 − H1(a)]2H2(b){1 − [H1(a)H2(b)]
n}

[1 − H1(a)H2(b)]2
.

Note that in the case of transparent media this equation coincides with

expression of standard theory, since the XTR energy loss inside a radiator will

be equal to the XTR energy observed far from the radiator in the wave zone

(z̄1 = ā and z̄2 = b̄). The mean number of XTR photons N̄in emitted inside a

radiator consisting two media with fluctuating thicknesses will be described by

the following relation:

d2N̄in

~dω dθ2
=

2α

π~c2
ωθ2Re

n

〈R(n)〉
o

,

〈R(n)〉 = (Z1 − Z2)
2



n
(1 − H1)(1 − H2)

1 − H
+

(1 − H1)
2H2[1 − Hn]

(1 − H)2

ff

,

where H = H1H2.
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The integration of n-foil XTR radiator in respect to θ2 can be simplified for the

case of regular radiator (ν1,2 → ∞) with transparent in terms of XTR

generation media, and n � 1 (G.M. Garibian, 1971). The frequency spectrum

of emitted XTR photons reads:

dN̄in

~dω
=

Z ∼10γ−2

0

dθ2 d2N̄in

~dω dθ2
=

=
4αn

π~ω
(C1 + C2)

2 ·
kmax
X

k=kmin

(k − Cmin)

(k − C1)2(k + C2)2
sin2

»

πt1
t1 + t2

(k + C2)

–

,

C1,2 =
t1,2(ω

2
1 − ω2

2)

4πcω
,

Cmin =
1

4πc

»

ω(t1 + t2)

γ2
+

t1ω
2
1 + t2ω

2
2

ω

–

.
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The sum
Pkmax

k=kmin
is defined by terms with k & kmin corresponding to the

region of θ & 0. Therefore kmin should be the nearest to Cmin integer

kmin ≥ Cmin. The value of kmax is defined by the maximum emitting angle

θ2
max ∼ 10γ−2. It can be evaluated as the integer part of:

Cmax = Cmin +
ω(t1 + t2)

4πc

10

γ2
.

This value usually results in:

kmax − kmin ∼ 102 ÷ 103 � 1,

however numerically, only few tens of terms contribute substantially to the sum,

i.e. one can choose kmax ∼ kmin + 20. Equation dN̄in/~dω corresponds to the

spectrum of total number of photons emitted inside regular transparent

radiator.
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Therefore the mean interaction length, λXTR, of XTR process in this kind of

radiators can be introduced as:

λXTR = n(t1 + t2)

»Z

~ωmax

~ωmin

~dω
dN̄in

~dω

–−1

,

where ~ωmin ∼ 1 keV, and ~ωmax ∼ 100 keV for the majority of high energy

physics experiments. The spectrum of total number of XTR photons after

regular transparent radiator is defined by dN̄in/~dω with:

n → neff =
1 − exp[−n(σ1t1 + σ2t2)]

1 − exp[−(σ1t1 + σ2t2)]
,

where σ1 and σ2 are photo-absorption cross-sections corresponding to the

photon frequency ω in the first and the second medium, respectively. With this

correction taking into account the XTR photon absorption in the radiator,

dN̄in/~dω corresponds to the results of C.W. Fabian and W. Struczinski, 1975

(see ALICE TDR).
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7 Comparison with experimental data

These models were implemented in the framework of the Geant4 simulation

toolkit. In Geant4 XTR generation inside radiators is described in the

framework of the so-called parametrisation approach by a family of classes

similar to that described in Geant4 web site. The base abstract class

G4VXTRdEdx is responsible for the creation of tables with integral energy and

angular distributions of XTR photons. It has also the DoIt function providing

XTR photon generation and moving the incident particle through a XTR

radiator. Particular models like G4IrregularXTRdEdx realise the pure virtual

function GetStackFactor, which calculates the response of XTR radiator 〈R(n)〉.
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Figure 10: Working of the G4VXTRdEdx::DoIt function. An incident

charged particle with Lorentz factor γ > 100 enters the logical volume

G4Envelope at the point p1 and exits at p2. It moves along the direction

given by the vector v. Each XTR photon then will be considered as a

secondary particle. The sum of the XTR photon energies is subtracted

from the kinetic energy of the incident particle.
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dE/dx and X-ray TR (Li/He 300 foils): 0.9 Xe + 0.1 CH4 , 3 cm (STP)
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Figure 11: The ionisation energy loss distribution produced by electrons

with a momentum of 3 GeV/c in a gas mixture 0.9Xe + 0.1CH4 with a

thickness of 3 cm at pressure 1 atm. The histogram is the experimental

data , open circles are simulation according to the PAI model and the XTR

model (periodic 300 foils of 40 µm Li spaced 126 µm He).

V. Grichine X-ray Transition radiation



X-ray Transition Radiation 53

Energy Loss and X-ray TR: 0.3 Xe + 0.55 He + 0.15 CH4 , 5 cm (STP)
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Figure 12: The ionisation energy loss distribution produced by electrons

with a momentum of 30 GeV/c in a gas mixture 0.35Xe+0.55He+0.15CH4

with a thickness of 5 cm at pressure 1 atm. The histogram is the experi-

mental data , open circles are simulation according to the PAI model and

the XTR model (periodic 350 foils 19 µm C2H2 spaced 600 µm CO2).

V. Grichine X-ray Transition radiation


