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Abstract

Electrodynamics of relativistic charge in medium is considered in terms of

its energy loss which is convenient for the simulation of emitted secondary

particles (the medium excitations). The main relations are derived in

details. Photo-absorption ionisation model is discussed with examples of

calculations implemented in the framework of the Geant4 toolkit.

Energy loss fluctuations produced by relativistic charge crossing a

medium layer with a fixed thickness are considered in terms of modified

Poisson distribution. Ionisation fluctuations in very thin absorbers are

derived.
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1 Maxwell Equations in Medium

Electric Ee and magnetic He fields induced in vacuum by external electrical

sources with the charge and current densities, ρe and je, respectively, satisfy the

Maxwell equations. In the Gauss system of units (c is the speed of light in

vacuum, and ~ is the Planck constant) they are:

•
Gauss’s law: ∇ · Ee = 4πρe.

•
The absence of magnetic charge: ∇ · He = 0.

•
Faradey’s law: ∇× E

e +
1

c

∂He

∂ t
= 0.

•
Ampere -Maxwell law: ∇× H

e − 1

c

∂Ee

∂ t
=

4π

c
j
e.
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In the analysis given below we’ll confine our attention to the important special

case of unordered, homogeneous, isotropic, and nongyrotropic equilibrium

media, whose properties are invariant under translations and reflections of

space and time, and also under rotations (in the rest frame of the medium as a

whole). Perturbations of the medium by external charges are assumed small

(linear electrodynamics). The medium is taken to be non-relativistic to the

extent which this consistent with the existence of magnetism. The above

restrictions are particularly convenient because they enable us to transform to

the Fourier components of physical quantities (i2 = −1):

F (r, t) =

ZZ

dk dω

(2π)4
F (k, ω) exp [i(kr− ωt)] ,

F (k, ω) =

ZZ

dr dtF (r, t) exp [−i(kr− ωt)] .

Here ω and k are the wave frequency and the wave vector, respectively. For a

real quantity A(t, r): A∗(ω,k) = A(−ω,−k).
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The Maxwell equations for Fourier components of fields in vacuum read:

k × H
e +

ω

c
E

e = −4πi

c
j
e, k · Ee = −4πiρe,

k × E
e − ω

c
H

e = 0, k · He = 0.

We now introduce transverse and longitudinal components (subscripts ⊥ and ‖,
respectively) of vector quantity V relative to the wave vector k (n = k/|k|):

V‖ = k
k · V
k2

, V⊥ = V − V‖, V = n(n · V) + n × (n × V).

One can see easily that:

k × V = k × V⊥, k · V = k · V‖.

We’ll use broadly (f.e., ∇× (∇× E), |k × j|2 ...):

A × (B × C) = B(A · C) − C(A · B),

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C).
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The electromagnetic field in a medium is described by the electric field E and

magnetic induction B, i.e. by the average values of the microscopic electric and

magnetic fields. The vectors E and B have a direct physical meaning: they

appear in the Lorentz force:

F = e

„

E +
1

c
v × B

«

,

acting on a classical test particle with the charge e moving with the velocity v

in the medium. They also satisfy the Maxwell equations:

k × B +
ω

c
E = −4πi

c
j = −4πi

c
(je + j

i), k · E = −4πiρ = −4πi(ρe + ρi),

k × E − ω

c
B = 0, k · B = 0,

where ρ and j are the total charge and current densities (satisfying the

continuity equation, ωρ = k · j). The indices e and i label external quantities

and those induced in the medium by the external fields, respectively.
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Instead of ρi, ji it is common to introduce the electric displacement D and

magnetic field H so that the equations with sources can be rewritten in the

form:

k × H +
ω

c
D = −4πi

c
j
e, k · D = −4πiρe.

In contrast to E and B, the quantities D and H do not have direct physical

meaning (though D‖ and static H(ω = 0) do have) because the transformation:

D → D + k × N, H → H − ω

c
N,

with arbitrary N does not alter the above equations. The Maxwell equations

contain a number of redundant unknowns and must be complemented with

constitutive (matter) relations that express individual properties of the

medium. The latter usually relate ρi, ji (or D and H) and the fields E and B.
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The structure of these constitutive relations is determined by the symmetry

properties of the medium. In linear electrodynamics:
„

1 − 1

µ̃

«

k × B + (ε̃ − 1)
ω

c
E⊥ = −4πi

c
j
i
⊥, (1 − ε)k · E = −4πiρi.

or

D‖ = εE‖, D⊥ = ε̃E⊥, H =
1

µ̃
B.

The quantities ε, ε̃, and µ̃ that parametrize these equations are, in general,

integral linear operators acting in space and time (in the Fourier components,

they are functions of ω and k). Only two of them are independent. They

correspond to the two types of field in the medium, i.e. the longitudinal field

E‖ and one (because of strict relation of Faraday’s law, ck × E⊥ = ωB)

transverse field E⊥ or B. The quantities ε̃ and µ̃ have no independent meaning

and can be varied arbitrarily but provided the following quantity η (normalized

to unity in vacuum) remains constant.
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To get η, we apply, k × (Ampere -Maxwell law) in the medium and vacuum:

1

µ̃
k × (k × B) + ε̃

ω

c
k × E⊥ = −4πi

c
k × j

e
⊥ = k × (k × H

e) +
ω

c
k × E

e
⊥.

Using ck × E = ωB and k · B = 0, we have:
„

−k2

µ̃
+ ε̃

ω2

c2

«

B =
4πi

c
k × j

e
⊥ =

„

−k2 +
ω2

c2

«

H
e.

Therefore the value (see below, He = ηB):

η =

„

k2

µ̃
− ε̃

ω2

c2

«„

k2 − ω2

c2

«−1

' constant,

since the response of both medium and vacuum is assumed to be linear ∼ je
⊥.

Accordingly there is a number of equivalent forms of constitutive equations.
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The two most widely used correspond to the choice:

1.

ε̃ = ε, µ̃ = µ,

so:

D = εE, B = µH.

It can be used for radiation processes with ω up to optical frequencies.

2.

ε̃ = ε⊥ = ε +

„

1 − 1

µ

«

c2k2

ω2
, µ̃ = 1, (i.e.: B = H).

so:

D‖ = εE‖, D⊥ = ε⊥E⊥.

It is used for higher frequencies in plasma physics. Here we’ll use it in

ionisation models where ~ω > I1, where I1 is the first ionisation potential.

Here ε is usual (longitudinal) permittivity, ε⊥ is transverse permittivity, and µ

is magnetic permeability.
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All such constitutive relations contain the single longitudinal parameter of the

medium ε and differ by the form of the transverse parameter: µ or ε⊥. The

most natural and convenient transverse parameter of the medium is, however,

the quantity related to the µ or ε⊥ by:
„

k2 − ω2

c2

«

η =

„

k2

µ
− ε

ω2

c2

«

=

„

k2 − ε⊥
ω2

c2

«

,

η(ω = 0) =
1

µ
, η(ω → ∞) = ε⊥.

In contrast to ε⊥ the quantity η does not have nonphysical singularity at ω = 0,

and, in contrast to µ, it does have a direct physical meaning at all frequencies.

The parameters ε and η are associated with the particular form of constitutive

equations, relating ρi, ji not to the fields E, B, but to external sources:

3 : ρi =

„

1

ε
− 1

«

ρe, j
i
⊥ =

„

1

η
− 1

«

j
e
⊥,

It is convenient to reduce these equations to (classical ↔ quantum

electrodynamics) a different form by introducing the potentials ϕ and A defined

by: E = −ikϕ + iωA/c and B = ik × A.
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They ensure that, ck × E ≡ ωB and k · B ≡ 0, become identities. If we adopt

the gauge k · A = 0 or A = A⊥, we can replace Ampere -Maxwell and Gauss’s

laws with the following equations for the potentials:
„

k2 − ω2

c2

«

A⊥ =
4π

c
j⊥, k2ϕ = 4πρ.

The analogous equations:
„

k2 − ω2

c2

«

A
e
⊥ =

4π

c
j
e
⊥, k2ϕe = 4πρe.

determine the external potentials ϕe and Ae produced by the same external

sources in vacuum. The constitutive relations can be expressed in terms of

these potentials

4π

c
j⊥ =

„

k2 − ω2

c2

«

Ae
⊥

η(ω,k)
, 4πρ = k2 ϕe

ε(ω,k)

which are distinguished by simplicity, lack of ambiguity, and clear physical

meaning. In fact, it is readily seen that ε−1 and η−1 are the renormalisation

factors reflecting the influence of medium in expression for longitudinal and

transverse components of the photon Green function in the medium.
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2 The Poynting’s Theorem in Medium

We apply E· operator to Ampere -Maxwell law and H· operator to Faraday’s

laws following by their subtraction:

E · (∇× H =
4π

c
j
e +

1

c

∂D

∂ t
) −H · (∇× E = −1

c

∂B

∂ t
).

E · ∇ × H − H · ∇ × E ≡−∇ (E × H) =
4π

c
j
e · E +

1

c

»

E · ∂D

∂ t
+ H · ∂B

∂ t

–

.

The above relation (right part) is called the Poynting’s theorem in medium. It

expresses the energy balance between external sources and electromagnetic

fields in medium. Let us consider a point-like charge e moving in the medium

along the trajectory ro(t) with the velocity vo(t) = ṙo(t), where t is the time.

The current density je reads: je(t) = evo(t)δ (r − ro(t)). Integration of the

Poynting’s theorem in respect to volume surrounding the charge results in:

−evo(t)E(ro(t), t) =
1

4π

Z

V



E
∂D

∂t
+ H

∂B

∂t

ff

dr +

I

S

Sds, S =
c

4π
E × H.
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3 Energy losses of arbitrarily moving charge

The calculation of energy loss is attractive in terms of simulation of secondary

particles emitted from the primary trajectory of relativistic charge moving in a

medium. These secondaries can be considered as transverse (photons, ...) and

longitudinal (plasmons, ...) excitations of the medium. We hence expand the

total energy loss ∆̄ to ⊥ and ‖ (relative to k !) parts:

∆̄ = −
Z ∞

−∞

dt

Z

R3

dr j(r, t) ·
ˆ

E⊥(r, t) + E‖(r, t)
˜

= ∆⊥ + ∆‖,

where j(r, t) is the current density of external sources. The energy loss is

convenient to represent as an integral in respect of the excitation energy ~ω > 0

and its wave vector (or momentum ~k). (It is in fact, implicit quantization!)

∆̄⊥ = −
Z ∞

−∞

dt

Z

R3

dr j(r, t) ·E⊥(r, t) = U⊥ =
1

4π

Z ∞

−∞

dt

Z

R3

drE⊥(r, t) · ∂D⊥

∂t
.

1

(2π)8

Z

dω dk

Z

dω
′

dk
′

j(k
′

, ω
′

) · E⊥(k, ω) exp
h

i(k + k
′

)r − i(ω + ω
′

)t
i
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∆̄⊥ = − 2π4

(2π)8

Z

dω dk

Z

dω
′

dk
′

j(k
′

, ω
′

) · E⊥(k, ω) δ(k + k
′

)δ(ω + ω
′

),

∆̄⊥ = − 1

(2π)4

Z ∞

−∞

dω

Z

K3

dk j(−k,−ω) · E⊥(k, ω), j(−k,−ω) = j
∗(k, ω),

Z 0

−∞

dω j
∗(k, ω) · E⊥(k, ω) = (ω → −ω) =

Z ∞

0

dω j
∗(−k,−ω) · E⊥(−k,−ω),

∆̄⊥ = − 1

(2π)4

Z ∞

0

dω

Z

K3

dk [ j∗(k, ω) · E⊥(k, ω) + j(k, ω) · E∗
⊥(k, ω)] ,

∆̄⊥ = − 2

(2π)4

Z ∞

0

dω

Z

K3

dkRe{j∗(k, ω) · E⊥(k, ω)}.

We have obviously the same result for longitudinal energy loss:

∆̄‖ = − 2

(2π)4

Z ∞

0

dω

Z

K3

dkRe{j∗(k, ω) · E‖(k, ω)}.
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Our problem is reduced to the calculation of E⊥(k, ω) and E‖(k, ω) in terms of

the charge and current densities of external sources j(k, ω) and ρ(k, ω). We use

for that the Maxwell equations for Fourier components:

k × H + ε
ω

c
E = −4πi

c
j, εk · E = −4πiρ, k × E =

ω

c
µH.

We have from the above equations:

E = 4πi
µ

ω

c2
j − ρ

ε
k

k2 − εµ
ω2

c2

, E‖ = −4πi
ρ

ε

k

k2
.

Taking into account the continuity equation (k · j = ωρ), we get:

E⊥ = E − E‖ = 4πiµ
ω

c2

k2j − (k · j)k

k2

„

k2 − εµ
ω2

c2

« .
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Therefore:

∆̄⊥ = − 2

(2π)4

Z ∞

0

dω

Z

K3

dkRe

8

>

>

<

>

>

:

4πiµ
ω

c2

(k · k)(j · j∗) − (k · j)(k · j∗)

k2

„

k2 − εµ
ω2

c2

«

9

>

>

=

>

>

;

.

Taking into account (Re{iz} = −Im{z}) we have:

∆̄⊥ =
1

2π3

Z ∞

0

ω dω Im

8

>

>

<

>

>

:

Z

K3

dk
µ|k × j(k, ω)|2

c2k2

„

k2 − εµ
ω2

c2

«

9

>

>

=

>

>

;

.

Similarly (just substituting E‖ for E⊥), we have for ∆‖:

∆̄‖ =
1

2π3

Z ∞

0

ω dω Im


Z

K3

dk

k2

|ρ(k, ω)|2
−ε(k, ω)

ff

, ω|ρ(k, ω)|2 =
|k · j(k, ω)|2

ω
.

For the representation of ∆̄⊥ in other transverse medium parameters, we use:

µ
„

k2 − εµ
ω2

c2

« =
1

„

k2 − ε⊥
ω2

c2

« =
1

„

k2 − ω2

c2

«

η

.
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Let a relativistic point-like charged particle with the charge e move along

arbitrary trajectory r(t) with the velocity v(t) in an absorbing medium with

the complex dielectric permittivity ε = ε1 + iε2 and magnetic permeability

µ = µ1 + iµ2. The corresponding Fourier component of the current density is:

j(r, t) = ev(t)δ [r − r(t)] ,

j(k, ω) =

Z ∞

−∞

dt

Z

R3

dr j(r, t) exp [−i(kr− ωt)] = e

Z ∞

−∞

dtv(t) exp {iωt − ikr(t)} .

We start to transform the total transverse energy loss ∆⊥, namely

|k × j(k, ω)|2 = (k2(j · j∗) − ω2ρρ∗) =

= e2

Z

dt1

Z

dt2 (k × v(t1)) · (k × v(t2)) exp {iω(t1 − t2) − ik[r(t1) − r(t2)]} ,

substituting, t = t2, τ = t1 − t2, we get:

= e2

Z ∞

−∞

dt

Z ∞

−∞

dτ (k × v(t + τ)) · (k × v(t)) exp {iωτ − ik[r(t + τ) − r(t)]} .

We can consider now the variable t as the time along the charge trajectory
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The mean number of photons N̄⊥ emitted into unit solid angle Ω, per unit

energy ~ω, in unit time t reads (at a given frequency: d∆̄⊥ ∼ ~ω dN̄⊥):

d3N̄⊥(t)

~ dω dt dΩ
=

1

~ω

d3∆̄⊥(t)

~ dω dt dΩ
=

α

2π3~c
Im

8

>

>

<

>

>

:

Z ∞

0

µ(ω) dk
»

k2 − ε(ω)µ(ω)
ω2

c2

–

Z ∞

−∞

dτ
ˆ

k2
v(t + τ)v(t) − ω2˜ exp {iωτ − ik[r(t + τ) − r(t)]}

ff

,

where α = e2/~c is the fine structure constant, Ω is the solid angle defining the

direction of k versus v(t): dk = k2dk dΩ. It is, in fact, the double differential

cross-section for emission of transverse medium excitations from an arbitrary

charged particle trajectory, r(t).

• No radiation recoil effects on the charge trajectory, r(t).

• For the particle charge q = ze, the result will ∼ z2α...

• The condition, ω > 0, results in Im(...).

• Relation can be integrated in respect of Ω for any r(t).
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We use known integral in respect to solid angle, k = kn:
Z

4π

dΩexp {−ink[r(t + τ) − r(t)]} = 4π
sin [k|r(t + τ) − r(t)|]

k|r(t + τ) − r(t)| .

Then the spectral intensity or differential cross-section read:

d2N̄⊥(t)

~ dω dt
=

1

~ω

d2∆̄⊥(t)

~ dω dt
=

2α

π2~c
Im

8

>

>

<

>

>

:

Z ∞

0

µ(ω) dk

k

»

k2 − ε(ω)µ(ω)
ω2

c2

–

Z ∞

−∞

dτ

ˆ

k2v(t + τ)v(t) − ω2
˜

|r(t + τ) − r(t)| exp [iωτ ] sin [k|r(t + τ) − r(t)|]
)

.

These general relations allow us to consider many particular practical cases,

namely Cherenkov and Doppler radiations, synchrotron radiation, prompt

bremsstrahlung, the influence of multiple scattering on the emission of optical

photons etc. We fix the trajectory r(t) mode only.
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4 Photo Absorption Ionisation model

We consider in this section the simplified derivation of Photo Absorption

Ionisation (PAI) model in terms of classical electrodynamics (Allison and Cobb,

1980). We start from the general relations for transverse and longitudinal

excitations produced by relativistic charge e moving in the medium with

constant velocity v. The mean number of photons N̄⊥ emitted into unit solid

angle Ω, per unit energy ~ω, in unit time t reads (at a given frequency:

d∆̄⊥ ∼ ~ω dN̄⊥):

d3N̄⊥(t)

~ dω dt dΩ
=

α

2π3~c
Im

8

>

>

<

>

>

:

Z ∞

0

dk
»

k2 − ε⊥(k, ω)
ω2

c2

–

Z ∞

−∞

dτ
ˆ

k2
v(t + τ)v(t) − ω2˜ exp {iωτ − ik[r(t + τ) − r(t)]}

ff

,

where α = e2/~c is the fine structure constant, Ω is the solid angle defining the

direction of k versus v(t): dk = k2dk dΩ.
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For the case of movement with the constant velocity v (r(t) = vt) the integral

with respect to τ can be calculated easily:
Z ∞

−∞

dτ
ˆ

k2v2 − ω2˜ exp{i(ω − k · v)τ} = 2πk2v2 sin2 θδ(kv − ω),

where θ is the angle between vand k. The delta function allows us to calculate

the integral in respect to θ (rather then k!). Taking into account dΩ = 2πd cos θ

(no ϕ-dependence of integrated function) we have:

δ(...) → 1

kv
, cos θ =

ω

kv
> 0, k =

ω

ω cos θ
>

ω

v
,

d2N̄⊥

~ dω dt
=

2α

π~c
Im

8

>

>

<

>

>

:

Z ∞

ω/v

kv

„

1 − ω2

k2v2

«

dk

»

k2 − ε⊥(k, ω)
ω2

c2

–

9

>

>

=

>

>

;

, dx = vdt, k → k2,

d2N̄⊥

~ dω dx
=

α

π~c
Im

8

>

>

<

>

>

:

Z ∞

(ω/v)2

„

1 − ω2

k2v2

«

dk2

»

k2 − ε⊥(k, ω)
ω2

c2

–

9

>

>

=

>

>

;

, t =
k2v2

ω2
,
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According to the PAI model approach, the transverse dielectric permittivity is

supposed to satisfy the dipole approximation in all resonance region of atomic

frequencies, i.e to depend for all k on ω only:

ε⊥2(k, ω) ≡ ε⊥2(ω) ' Nc

ω
σγ(ω), ε⊥1(k, ω) ' ε⊥1(ω) = P

Z ∞

0

ω
′

ε⊥2(ω
′

) dω
′

ω′2 − ω2
,

where the integral in respect of ω
′

is treated as the principal value.

Im

8

>

>

<

>

>

:

Z ∞

1

„

1 − 1

t

«

dt

[t − ε⊥(ω)β2]

9

>

>

=

>

>

;

, ε⊥(ω)β2 = a,

Im


Z ∞

1

»„

1 − 1

a

«

1

t − a
+

1

at

–

dt

ff

= Im

»„

1 − 1

a

«

ln(T − a) +
1

a
ln T

–ff

T→∞

−

−Im

»„

1 − 1

a

«

ln(1 − a) +
1

a
ln 1

–ff

= Im

„

1 − 1

ε⊥(ω)β2

«

ln
1

1 − ε⊥(ω)β2

ff

.
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Therefore the transverse spectrum finally reads:

d2N̄⊥(t)

~ dω dx
=

α

~c

1

π
Im

„

1 − 1

ε⊥(ω)β2

«

ln
1

1 − ε⊥(ω)β2

ff

.

It is exactly the number of Cherenkov photons emitted from unit trajectory

length into unit energy. We actually derived:

d2N̄⊥(t)

~ dω dx
=

2α

~c

1

π
Im


Z 1

0

sin2 θ d cos θ

cos θ

1

1 − ε⊥(ω)β2 cos2 θ

ff

, t = cos2 θ,

Im


Z 1

0

(1 − t) dt

t(1 − at)

ff

= Im


Z 1

0

»

1

t
+

1 − a

at − 1

–

dt

ff

= Im


Z 1

0

1 − a

at − 1
dt

ff

=

= Im

8

>

<

>

:

Z 1

0

1

a
− 1

t − 1

a

dt

9

>

=

>

;

= Im

„

1

a
− 1

«»

ln

„

1 − 1

a

«

− ln

„

−1

a

«–ff

=

= Im

„

1 − 1

ε⊥(ω)β2

«

ln
1

1 − ε⊥(ω)β2

ff

.
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The mean number of longitudinal excitations (mainly electrons for atomic

frequencies) N̄‖ emitted into unit solid angle Ω, per unit energy ~ω, in unit

time t reads (at a given frequency: d∆̄‖ ∼ ~ω dN̄‖):

d3N̄‖(t)

~ dω dt dΩ
=

α

2π3~c
Im

8

>

<

>

:

Z ∞

0

dk

−ε(k, ω)
ω2

c2

Z ∞

−∞

dτ [k · v(t + τ)] [k · v(t)] exp {iωτ − ik[r(t + τ) − r(t)]}
ff

.

For the case of movement with the constant velocity v (r(t) = vt) the integral

with respect to τ is calculated similarly:
Z ∞

−∞

dτ k2v2 cos2 θ exp{i(ω − k · v)τ} = 2πk2v2 cos2 θ δ(kv − ω),

δ(...) → 1

kv
, cos θ =

ω

kv
> 0, k =

ω

ω cos θ
>

ω

v
,
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Therefore after integration in respect of θ we have:

d2N̄‖

~ dω dx
=

α

~c

2

π
Im

(

Z ∞

ω/v

dk

k

1

−ε(k, ω)β2

)

,

1

−ε
=

−ε1 + iε2
|ε|2 ' iε2, |ε|2 ' 1, Im{iε2} = ε2,

The photo-absorption model approximation reads for ε(k, ω):

ε2(ω, k) ≡ Nc

ω

»

σγ(ω)H

„

ω − ~k2

2m

«

+ δ

„

ω − ~k2

2m

«
Z ω

0

σγ(ω
′

) dω
′

–

,

where H is the Heaviside unit step function. The number of longitudinal

excitations now reads (we introduce new variable t = k2):

d2N̄‖

~ dω dx
=

α

~

N

πβ2

∞
Z

(ω/v)2

dt

t

2

4

σγ(ω)

ω
H

„

ω − ~t

2m

«

+
1

ω
δ

„

ω − ~t

2m

«

ω
Z

0

σγ(ω
′

) dω
′

3

5 .
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We note that:

ω2

v2
< t <

2mω

~
, since, ~ω . 2mv2 ∼ 2mc2 ∼ 1MeV,

then the first term is proportional to:

Z ∞

(ω/v)2

dt

t
H

„

ω − ~t

2m

«

=

Z 2mω/~

(ω/v)2

dt

t
= ln

2mv2

~ω
,

and the second one is proportional to:

δ(...) → 2m

~
, t =

2mω

~
,

Z ∞

(ω/v)2

dt

t
δ

„

ω − ~t

2m

«

=
2m

~

~

2mω
=

1

ω
.

Therefore we have finally for the spectrum of longitudinal excitations

(δ-electrons):

d2N̄‖

~dω dx
=

αN

π~β2

»

σγ(ω)

ω
ln

2mv2

~ω
+

1

ω2

Z ω

0

σγ(ω
′

) dω
′

–

,
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Combining these results we have for the total number of ionizing collisions

produced by relativistic charge per unit trajectory length in unit energy interval

(near ~ω) according to the PAI model:

d2N̄

~dω dx
=

α

π~c



Im

»„

1 − 1

ε⊥(ω)β2

«

ln
1

1 − ε⊥(ω)β2

–

+

+
Nc

β2

»

σγ(ω)

ω
ln

2mv2

~ω
+

1

ω2

Z ω

0

σγ(ω
′

) dω
′

–ff

,

ε⊥2(ω) ' Nc

ω
σγ(ω), ε⊥1(k, ω) ' ε⊥1(ω) = P

Z ∞

0

ω
′

ε⊥2(ω
′

) dω
′

ω′2 − ω2
.

We see that the ionisation spectrum is expressed in terms of photo-absorption

cross-section (PAI) which is well and reliably tabulated for the majority of

chemical elements. The first term express the transverse cross-section

(Cherenkov photons). The second (comes from resonance region where internal

electron motion is much smaller compared to its binding energy) and third

(represents Rutherford scattering from those electrons than are quasi-free for an

energy transfer ~ω) are known as the longitudinal cross-section.
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 87.5% Xe + 7.5% CH4 + 5% C3H8 , 2.3 cm (20oC, 1 atm)
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 experiment: proton, p = 3 GeV/c

Figure 1: The ionisation energy loss distribution produced by protons with

the momentum of 3 GeV/c in the gas mixture 87.5%Xe + 7.5%CH4 +

5%C3H8 with the thickness of 2.3 cm ( 20 oC, 1 atm). Histogram is the

experimental data , open circles are simulation according to the PAI model.
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Relativistic Rise: 0.93 Ar + 0.07 CH4 , 6 cm (STP)
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Figure 2: Relativistic rise of the most probable ionisation energy loss in

the gas mixture93%Ar + 7%CH4 with the thickness of 6 cm (STP). Open

circles are the experimental data , closed circles are simulation according

to the PAI model. It has natural density effect.
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Energy Loss Distribution: Si  , 0.0205 mm
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Figure 3: The ionisation energy loss distribution produced by pions with

the momentum of 5 GeV/c in silicon with the thickness of 20.5 µm . His-

togram is the experimental data , open circles are simulation according to

the PAI model.
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Energy Loss Distribution: Diamond  , 0.118 mm

0

100

200

300

400

500

600

0 20 40 60 80 100
Energy Loss (keV)

Ar
bit

rar
y U

nit
s

γ = 4 , PAI model: 104  events
 experiment: e-, Ek = 1.5 MeV (90Sr)

Figure 4: The ionisation energy loss distribution produced by electrons with

the momentum of ∼ 1.5 GeV/c (90Sr) in polycrystalline diamond with the

thickness of 118 µm. Histogram is the experimental data , open circles

are simulation according to the PAI model with the Gamma-distributed

diamond thickness.
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5 General Consideration of Excitation

Fluctuations

The energy loss ∆ on medium excitations produced by relativistic charged

particle crossing a radiator with a fixed length l experiences fluctuations due to

both the number of emitted excitations n (discrete Poisson distribution) and

their energies ω (rather than frequencies to avoid extra ~ in relations):

∆ = ω1 + ω2 + · · · + ωn. (1)

The energy loss distribution ϕ(∆) normalized so that the probability to loose

the energy in the interval (∆,∆ + d∆) is ϕ(∆) d∆:
Z ∞

0

ϕ(∆) d∆ = 1

from the mathematical point of view is the modified Poisson distribution

describing the fluctuations of the sum of random variables, when the number of

these variables fluctuates according to the usual discrete Poisson distribution.
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Let us introduce the probability density, P (x, ω), of the excitation emission

with the energy ω at the point x (x is the distance along the trajectory), which

is normalized according the following expression:

l
Z

0

dx

ωmax
Z

ωmin

dωP (x, ω) = 1.

Select some trajectory with fixed both the number of collisions and the energy

transfers in each collision. Obviously, if the excitation number n and the

excitation energies ωk are fixed, then the total energy loss is fixed as well.

Therefore in this case the distribution is reduced to the Dirac delta function:

ϕ(∆) = δ

 

∆ −
n
X

k=1

ωk

!

.

It is usually assumed that the number of excitations emitted from the

trajectory with the fixed length fluctuates according to the Poisson distribution.
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Then the following expression is valid:

ϕ(∆) =

∞
X

n=0

8

<

:

N̄n exp(−N̄)

n!

n
Y

k=1

2

4

l
Z

0

dxk

ωmax
Z

ωmin

dωkP (xk, ωk)

3

5 δ

 

∆ −
n
X

k=1

ωk

!

9

=

;

,

where N̄ is the mean number of the excitations produced along a trajectory of

the length l. The energy loss resulting in medium excitations is a non-negative

value (∆ ≥ 0). Therefore it is convenient to express the delta function with help

of the Laplace transformation:

δ

 

∆ −
n
X

k=1

ωk

!

=

i∞
Z

−i∞

dp

2πi
exp(p∆)

n
Y

k=1

exp(−pωk), Re(p) > 0.

Taking into account the identity of integrals on the variables xk and ωk, the

summation on n in (5) results in the exponential function:

ϕ(∆) =

i∞
Z

−i∞

dp

2πi
exp(p∆ − N̄)S(p),
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S(p) =

∞
X

n=0

1

n!

2

4N̄

l
Z

0

dx

ωmax
Z

ωmin

dωP (x, ω) exp(−pω)

3

5

n

=

= exp

2

4

l
Z

0

dx

ωmax
Z

ωmin

dωR(x, ω) exp(−pω)

3

5,

where we introduced, R(x, ω) = N̄P (x, ω), the local (at the point x) spectral

density of the mean number of emitted excitations:

l
Z

0

dx

ωmax
Z

ωmin

dωR(x, ω) = N̄ .

We have finally:

ϕ(∆) =

i∞
Z

−i∞

dp

2πi
exp

8

<

:

p∆ −
l
Z

0

dx

ωmax
Z

ωmin

dωR(x, ω) [1 − exp(−pω)]

9

=

;

.
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We simplify this general equation for the uniform case when P (and hence R)

do not depend on x:

l
Z

0

dx

ωmax
Z

ωmin

dωR(x, ω) =

ωmax
Z

ωmin

dN̄

dω
dω = N̄ .

We can therefore write the well known result:

ϕ(∆) =

Z i∞

−i∞

dp

2πi
exp



p∆ −
Z ωmax

ωmin

dN̄

dω
[1 − exp(−pω)] dω

ff

, Re(p) > 0,

Note that the origin of these fluctuations is the same as of the fluctuations of

ionisation energy loss described by L. Landau and the fluctuations of the energy

loss on transition radiation considered later by V.A. Chechin and

V.K. Ermilova. Similar expressions and some approximations were also derived

for fluctuations of energy loss on Cherenkov and synchrotron radiations.

L. Landau derived the general solution of the problem by the method of

integral equation. Here the energy loss on medium excitations was considered

based on a statistical approach, which is more general than the method of

integral equation.
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6 Distribution of ionisation in very thin

absorbers

What we measure in proportional detectors like multi-wire proportional

chambers or silicon detectors is a signal proportional to ionisation (the number

of electron-ion pairs) produced by an incident particle inside the sensitive

volume of the detector. We consider now the problem concerning the

distribution of ionisation in very thin absorbers when the ionisation is not far

from the unit, n & 1. The number of electron-ion pairs created in one ionisation

collision with the energy transfer ω is distributed around the mean ionisation n̄,

n̄ =
ω

W
,

with the variance,

< (n − n̄)2 >= F
ω

W
,

where W is the mean energy required for the creation of one electron-ion pair,

and F < 1 is the Fano factor.
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Usually, for simulation it is sufficient to approximate the Fano distribution

p(n), by the simple Gaussian:

p(n) =
1

σ
√

2π
exp



− (n − n̄)2

2σ2

ff

, σ2 = F
ω

W
.

The latter distribution can be expressed in terms of energy transfers:

p(ω) =
1

σ′
√

2π
exp

(

− (ω − ω
′

)2

2σ′2

)

, ω
′

= n̄W, σ
′2 = F

ω

W
.

Then we can consider the influence of the Fano effect on the ionisation cross

section dσi/dω by the following convolution:

dσ̃i

dω
=

Z ωmax

I1

1

σ′
√

2π
exp

(

− (ω − ω
′

)2

2σ′2

)

dσi

dω′
dω

′

,

where I1 is the first ionisation potential and ωmax is the kinematic maximum of

the energy transfer. The latter cross section can be used in the general solution

for the distribution of the energy loss ϕ(∆) in the layer with a fixed thickness l:

ϕ(∆) =

Z i∞

−i∞

dp

2πi
exp



p∆ − lN

Z ωmax

I1

dσ̃i

dω
[1 − exp(−pω)] dω

ff

,
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where N is the atomic density and the path of integration corresponds to

Re(p) > 0. Since the ionisation is the discrete random value, we consider the

energy loss distribution as the sum over a fixed losses ∆n = nW :

ϕ(∆) =
∞
X

n=0

Cnδ(∆ − nW ),

where the coefficients Cn can be considered as the probabilities to measure the

ionisation n in absorber with the thickness l. Our problem is reduced to the

determination of the coefficients Cn. We should simplify the distribution,

indeed:

J(p) = lN

Z ωmax

I1

dσ̃i

dω
[1 − exp(−pω)] dω '

kmax
X

k=1

N̄k [1 − exp(−kpW )] ,

where

N̄k = lNW

„

dσ̃i

dω

«

ω=kW

, kmax =
ωmax

W
.

Here N̄k is the mean number of ionizing collisions resulting in the creation of k

electron-ion pairs.
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It is convenient to represent the δ-function in terms its Laplace transformation:

δ(∆ − nW ) =

Z i∞

−i∞

dp

2πi
exp {p(∆ − nW )} , Re(p) > 0.

Then we have:
∞
X

n=0

Cn exp{−npW} = exp{−J(p)}.

We apply now the operator

Z iπ/W

−iπ/W

dp exp{kpW},

to the both sides of the above equation and get after simple transformations:

Cn = W

Z iπ/W

−iπ/W

dp

2πi
exp

(

npW −
kmax
X

k=1

N̄k [1 − exp(−kpW )]

)

.
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It is convenient to make the following transformation: z = exp(−pW ). Then

equation for Cn becomes:

Cn =

I

C̃

dz

2πi

F (z)

zn+1
,

where

F (z) = exp

(

−
kmax
X

k=1

N̄k(1 − zk)

)

,

and the contour C̃ corresponds to counterclockwise integration over small,

|z| < 1 circle around the origin of z-plane. From the residue theory we then

have:

Cn =
1

n!

»

dnF

dzn

–

z=0

=
1

n!
F (n)(0).

The latter equation means we have reduced our problem to the calculation of

n-derivative of the function F (z) at the origin of the complex plane z.
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We note that:

F (1) = F · G, G(z) =

kmax
X

k=1

kN̄kzk−1,

and

F (n+1) = (F · G)(n) =

n
X

k=0

n!

k!(n − k)!
F (n−k)G(k).

Since

G(k)(0) = (k + 1)!N̄k+1,

we have finally the following efficient recurrence relation n > 0:

Cn+1 =

n
X

k=0

k + 1

n + 1
N̄k+1Cn−k, Co = exp

(

−
kmax
X

k=1

N̄k

)

.

Here we can obviously represent our relations in terms of experimentally

measured values.
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Indeed we have:

kmax
X

k=1

N̄k = lN

Z ωmax

I1

dσ̃i

dω
dω = lNσi = ln1 = N̄o,

where n1 is the specific primary ionisation, and N̄o is the mean number of

ionizing collisions in layer with the thickness l. Relation for Cn+1 modifies the

recurrence relation for the usual Poisson distribution (N̄k>1 = 0 or N̄o = N̄1):

Cn+1 =
N̄o

n + 1
Cn, Co = exp(−N̄o) → Cn =

N̄n
o

n!
exp(−N̄o).

Thus recurrence relation for Cn+1 is valid for any modified Poisson distribution,

i.e. thedistribution of the sum of discrete random variables when the number of

variables is distributed according to the usual Poisson relation. For numerical

calculations, relation for Cn+1 is efficient when N̄o . 100 or for gas layers

lP . 3 cm · atm, otherwise Co becomes too small and recurrence relation

accumulates the computer precision errors.
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