# ATLAS Trigger/DAQ Upgrades

**ATLAS** 

EXPERIMENT

#### Frank Winklmeier University of Oregon

SMARTHEP Kick-off Meeting 4<sup>th</sup> May 2017

Lunds universitet, Sweden





### Working on ATLAS Trigger/DAQ since 2006

- CERN Fellow and Staff
- Now as Research Associate at University of Oregon

### Areas

- HLT Algorithm Integration
- Trigger Core Software
  - Deployment of quasi real-time conditions updates in the HLT
- Trigger Operations/Run Coordinator
- Trigger Coordinator
- Phase-II Event Filter Upgrade Co-coordinator

### This talk

Highlight some areas relevant to real-time analysis

## ATLAS High-Level-Trigger

### **Typical HLT Algorithms**

- Fast reconstruction
  - Trigger-specific or special configurations of offline algorithms
  - Guided by L1 Rols
- Precision reconstruction
  - Offline (or very close to) algorithms
  - Full detector data available

#### Resources

- Output rate ~1 kHz (full events)
- Processing time ~300 ms

### **Partial Event Building**

- Partial events with data from a subset of the detectors
- Special case: Trigger-Level Analysis
  - Only write the objects created by the HLT (e.g. jets)
  - Allows much higher output rates thanks to smaller event sizes

#### Trigger DAO Pixel Other Muor Detector Readou evel ' Custom FE FE FE Hardware Level 1 Accept ROD ROD ROD RolB O(100) FTK Readout System ~ 30k нц Fragments Processing Unit Full event O(10) Data Logger CERN Permanent Storage

**ATLAS Run-2** 

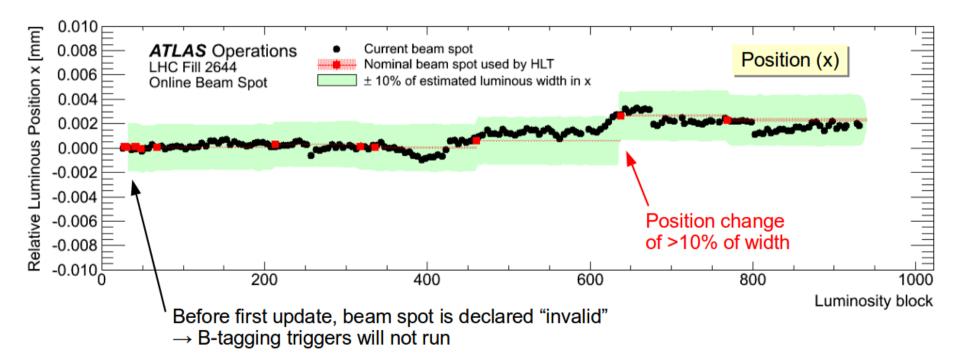
### Real-time conditions updates in the HLT

### Deployed mechanism to update conditions in the HLT during the run

#### Beamspot

- Required for b-tagging
- Luminosity / Pileup
  - LAr energy reconstruction
  - Pile-up dependent selection algorithms (e.g. electrons, taus)
- Can be extended to other conditions if needed

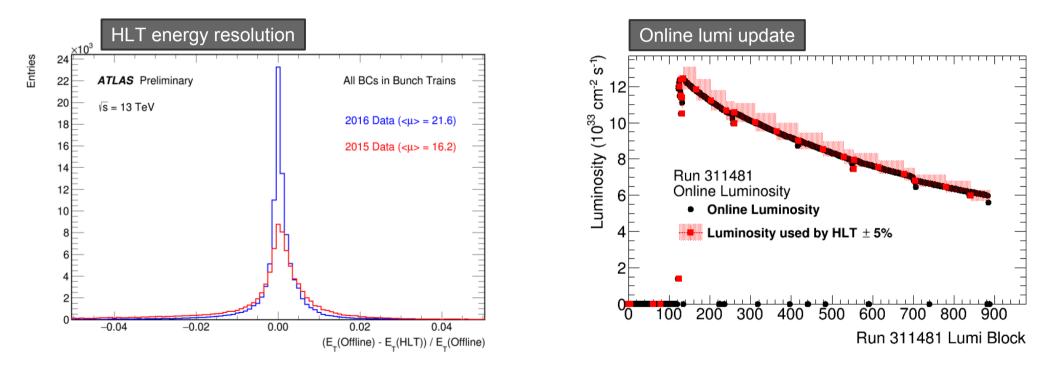
### Update mechanism


- Want to keep update frequency at a reasonable level
  - Measure quantity X
  - If X changes by more than N% write new value into conditions DB
  - Notify the HLT to reload conditions

#### By construction this introduces a lag of ~2 minutes

Not a problem for the use-cases so far

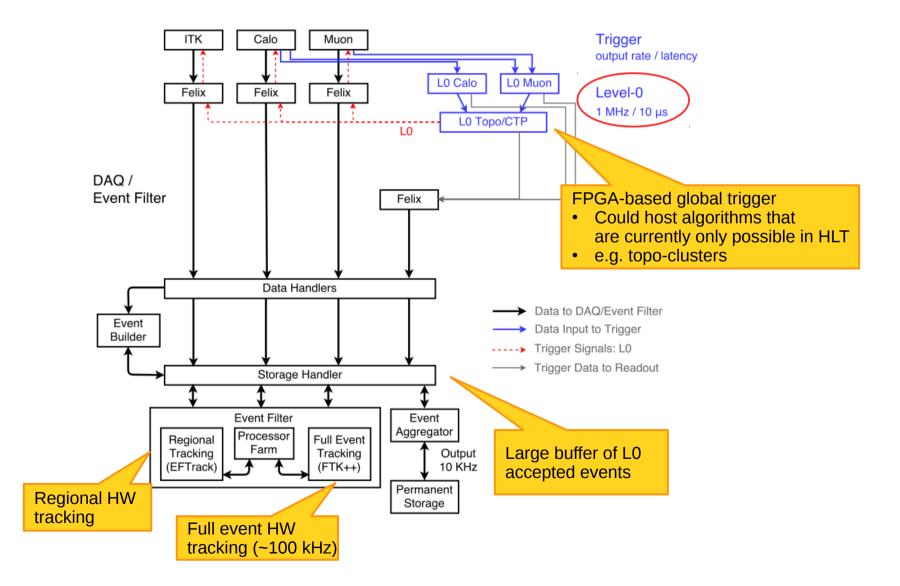
## Example: Beamspot Update


- Beam Spot Update Criteria
  - <u>Positions</u> move by ±10% of the width; or
  - <u>Widths</u> change by  $\pm 10\%$  from nominal (both with  $2\sigma$  significance); or
  - <u>Uncertainties</u> improve by more than 50%
  - First valid beam spot
- Example: Position (x-horizontal)



### Example: LAr pedestal correction

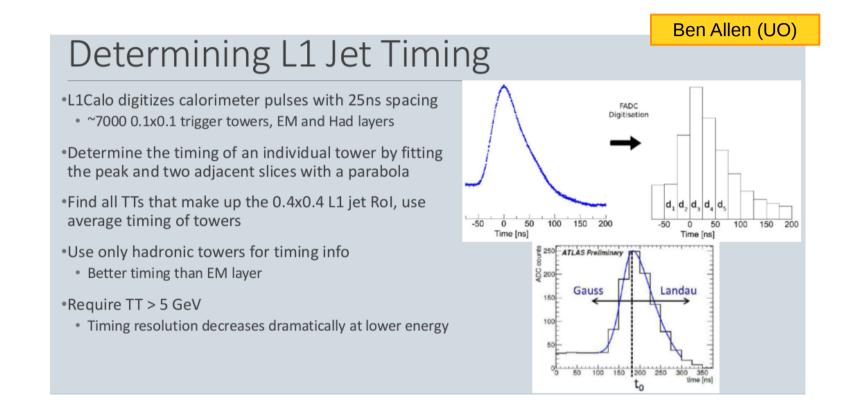
### Bunch-crossing-dependent energy correction


- In 2016 introduced bunch-crossing dependent pedestal correction
  - Requires per-bunch luminosity measurement distributed to HLT nodes
  - Luminosity is updated at the HLT if changed by >5%
- Clear improvement in energy resolution, i.e. for bunches at front of the train





### Completely new Trigger/DAQ system in Phase-II


Now is the time to think about new features required



## Timing-based HW jet trigger

### LLPs could be triggered efficiently based on L1 jet timing

- Currently trying to develop an HLT based jet trigger
- If successful this could potential be done in hardware at Phase-II



## Asychronous HLT processing

### Need for large disk buffer between L0 accept and HLT currently under study

- Decouples HLT from hardware trigger system
- Allows for HLT processing between LHC fills
- Could introduce a calbration step before HLT processing
  - Would replace current conditions update mechanism
- Cost-benefit calculation is needed
  - 5 TB/s throughput and 18 PB storage per hour of buffering would be needed
  - Could equally well invest this in more HLT CPU

### Possible use-cases for calibration loop

- Inner detector alignment during data-taking
  - Currently any ID movement is absorbed by our beamspot measurement
- We are very interested in other use case and new ideas!

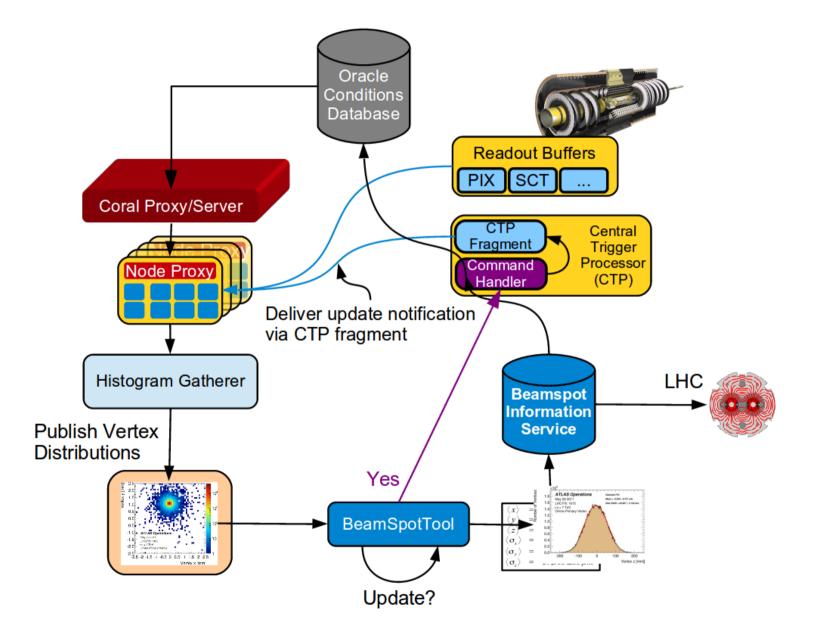


### Real-time analysis will be challenging also in Phase-II

- ATLAS will not be able to follow LHCb/ALICE model of full offline reconstruction online
  - Event size x trigger rate too large
  - Full event reconstruction too slow

#### But technology evolution will allow new features

- Powerful FPGAs in hardware trigger
- Hardware-based track reconstruction
- Possibility to move HLT algorithms closer to offline calibrations


### Input from the real-time analysis community is essential

Next milestone is the ATLAS TDAQ Phase-II TDR (end of this year)



# Backup





### The upgraded LHC experiments (LS2 and LS3)

### • ALICE

Continuous readout at TPC limit (~50 kHz)

- Merge of online and offline computing farm
- LHCb
  - No HW trigger  $\rightarrow$  40(30) MHz to HLT
- ATLAS/CMS
  - Increase HW trigger output rate to ~ 1 MHz
  - Replacement of the majority of FE electronics
  - New inner trackers incl. HW-based track triggers
  - Details of TDAQ systems still very much under discussion

|               |       | # Trigger Levels<br>HW SW |   | Accept rate |         | Event<br>size | Event<br>building     | Permanent<br>Storage |
|---------------|-------|---------------------------|---|-------------|---------|---------------|-----------------------|----------------------|
| ALICE (Pb-Pb) | Run-3 | 0                         | 1 | 50 kHz      |         | 60 MB         | <sup>†</sup> 0.5 TB/s | †90 GB/s             |
| LHCb          | Run-3 | 0                         | 1 | 30 MHz      | 20 kHz  | 0.1 MB        | 4 TB/s                | 2 GB/s               |
| ATLAS         | Run-4 | 1 (or 2)‡                 | 1 | 0.4(1) MHz  | 10 kHz  | 5 MB          | 2(5) TB/s             | 50 GB/s              |
| CMS           | Run-4 | 1                         | 1 | 0.75 MHz    | 7.5 kHz | 5 MB          | 4 TB/s                | 40 GB/s              |

<sup>+</sup> Alice: event compression (factor~6) and only storing reconstructed objects

<sup>‡</sup> Atlas: One or two-level HW trigger under discussion