Searching for Dark Matter Production at the LHC

Ruth Pöttgen 26 April 2017

1

Why Dark Matter?

many **cosmological** observations

=> compelling **evidence** for

existence of "dark matter" (DM)

we can describe **merely ~5%** of the universe!

- particle physics:
 - what are the building blocks (=particles)?
 - current best knowledge: Standard Model (SM)

- particle physics:
 - what are the building blocks (=particles)?
 - current best knowledge: Standard Model (SM)

- particle physics:
 - what are the building blocks (=particles)?
 - current best knowledge: Standard Model (SM)

- particle physics:
 - what are the building blocks (=particles)?
 - current best knowledge: Standard Model (SM)

no viable candidate within Standard Model

- particle physics:
 - what are the building blocks (=particles)?
 - current best knowledge: Standard Model (SM)

no viable candidate within Standard Model

- need new particles!
- popular generic class: weakly interacting massive particles (WIMPs)
 - naturally explain present-day abundance
 - => broad search programme

- complementarity of searches
- LHC and ATLAS
- ► X+E^{Tmiss} signatures
- Results and Interpretations
- future prospects

WIMP-Nucleon-Scattering Cross Section

WIMP mass

WIMP mass

WIMP mass

collider

experiments more sensitive at **low** masses

no astrophysical uncertainties!

Large Hadron Collider (LHC)

- hadrons: particles built from (2 or 3) quarks
 - e.g. proton ("uud"), neutron ("ddu")
- 1232 superconducting dipole magnets
 - cooled by liquid He (1.9K)

- 392 quadrupole magnets
- collides protons, heavy ions or both
- collisions with intervals as short as 25ns
- centre-of-mass energies up to 14 TeV

27km, 100m underground

The Background Challenge

- direct detection: "background free" searches
- collider searches: not exactly...

10⁹ 10⁹ 10⁸ 10⁸ σ_{tot} 10⁷ 107 LHC Tevatron 10⁶ 10⁶ 10⁵ 10⁵ σ_{b} 10³³ cm⁻²s⁻¹ 10⁴ 10⁴ 10³ 10³ $\sigma_{jet}(\mathsf{E}_{\tau}^{-jet}$ > √s/20) 10² 10² σ (nb) σ_W 10¹ 10 sec for σ₇ 10[°] 10⁰ $\sigma_{iet}(E_T^{jet} > 100 \text{ GeV})$ events / 10⁻¹ 10⁻¹ 10⁻² 10⁻² 10⁻³ 10⁻³ σ_t $\sigma_{\rm jet}({\sf E}_{\rm T}^{\rm jet}>\sqrt{s/4})$ 10⁻⁴ 10⁻⁴ σ_{Higgs}(M_H=120 GeV) 10⁻⁵ 10⁻⁵ 200 GeV 10⁻⁶ 10⁻⁶ 500 GeV 10⁻⁷ 10⁻⁷ 0.1 10 1 √s (TeV)

proton - (anti)proton cross sections

W.J. Stirling, private communication

The Background Challenge

- direct detection: "background free" searches
- collider searches: not exactly...

proton - (anti)proton cross sections
Datasets and Future Milestones

- important figure of merit: integrated luminosity L —> amount of data
 - measured in 1/fb

• more to come:

~100/fb by end of run-2 (2018) shutdown until 2021

~300/fb by end of run-3 (2023)

Inside the proton

- protons are not fundamental particles!
 - made up of 3 valence quarks + "sea quarks" & gluons
 - collectively: partons
- special feature of strong interaction:

- gets stronger at larger distance!
 like a rubber band pulled apart
- at some point, energy large enough to form new quarks (E=mc²)
- hadrons are formed => "jets"
- confinement of quarks in hadrons, i.e. there are no free quarks

Proton-Proton Collisions

proton-proton collisions are actually parton-parton collisions

ATLAS

- reconstruct physics objects (electrons, photons, jets...)
- non-interacting particles "carry away" energy (part of many new physics signals)
 - missing transverse energy (E_T^{miss}) calculated from all measured momenta

Particle Detection

 vector sum of transverse momenta after collision has to sum up to 0!

Collider WIMP Signature

- WIMPs:
 - massive —> can account for relic density
 - interacting = interacting non-gravitationally
 - weakly interacting
 - ---> escape collider experiment **undetected**
 - additional (high pT) object to trigger on
 - missing transverse energy from recoiling WIMPs
 - => "X+E_T^{miss}" searches

The Workhorse: jet+E_T^{miss} ("Mono-jet")

large cross sections for jet production at hadron collider

Real Life Event Display

ATLAS-CONF-2012-147

=> search for excess over SM prediction at high E_T^{miss}

Background Estimation

main challenge: estimation of irreducible/dominant backgrounds

- simulation constrained using data in control regions (CR)
 - non-overlapping with signal region (SR)
 - ▶ e.g. jet+E^{miss}
 - **CRs**: select $Z(\ell \ell)/W(\ell v)$ events (i.e. explicitly **select leptons**)
 - SR: veto leptons
- typically "global fit" to all CRs simultaneously
 - constrain normalisation/shapes

Example: jet+E_T^{miss}

- SRs: muon and electron veto
 - ▶ inclusive and exclusive in E^{miss}

- Iargest uncertainties:
 - W/Z transfer: 2-4%
 - data statistics in CRs: up to 10%
 - theory uncertainties on top: 3%

More X+E^{miss} Searches

X can also be...

a photon

a Higgs boson

Apr 26, 2017

More X+E^{miss} Searches

X can also be...

a photon

a Higgs boson

More X+E_T^{miss} Searches

X can also be...

a photon

a Higgs boson

Ruth Pöttgen

Apr 26, 2017

More X+E_T^{miss} Searches

X can also be...

a photon

a Higgs boson

More X+E_T^{miss} Searches

X can also be...

a photon

a Higgs boson

Interpretation

- Run-1: effective field theories (EFT) = low energy approximation
 - questionable validity at LHC energies!
- for Run-2: benchmark simplified models (where possible)
 - provide basis for re-interpretations (distinct kinematics)
 - collected by ATLAS/CMS DM forum (now LHC DM working group)
 - Dirac-fermionic WIMPs
 - mostly 4 parameters:
 - mediator mass (M_{Med})
 - WIMP mass (m_x)
 - ▶ 2 couplings (g_{DM},g_q), typically (1, 0.25)
 - different types of mediators, minimal width
 - UV complete, but less generic than EFT

SM \mathcal

DM

Higgs+E_T^{miss}: Models

- new after Higgs discovery
- no ISR! (small coupling)
- widely used simplified model: s-channel vector mediator radiating Higgs
- other models considered in some analyses:
 - s-channel scalar mediator radiating Higgs
 - Z'-2HD simplified model
 - scalar 2HD simplified model

• additional parameters, e.g. gz'z'h, mixing angle...

Higgs+E_T^{miss}: Results

The Future

- more data (full run-2 and beyond)
- new window: Higgs+ET^{miss} searches (more channels)
- more models
- consistent set of models/parameters with CMS
- combination
- comparisons with direct detection

Higgs Boson Decays

- largest branching ratios: bb and WW
 - ▶ BR(bb)~ 3 * BR(WW)

$H(b\overline{b})+E_{T}^{miss}$ - Background Estimation

- alternative method to estimate one of the main backgrounds: Z(vv)+jets
 - explore use of photon(γ)+jets events
 - very similar topology at high boson p_T
 - Z(vv)+jets: boson $p_T = E_T^{miss}$
 - γp_T as proxy for E_T^{miss}

- γ well measurable!
- can select sample of γ+jets events with high purity

$H(b\overline{b})+E_T^{miss}$ - Background Estimation

- γ: electromagnetic interaction, Z: weak interaction
 - different coupling to quarks
 - theoretically well known
- use simulation to determine ratio $Z(vv)/\gamma$
 - (partial) cancellation of uncertainties
 - transfer factor $f_{\rm T} = \frac{N_{\rm Z(\nu\nu)+jets}^{\rm sim}}{N_{\gamma+jets}^{\rm sim}}$
- select pure γ+jets sample in data
 - **prediction** for Z(vv)+jets $N_{Z(vv)+jets}^{pred} = f_T \cdot N_{\gamma+jets}^{data}$
 - possible reduction of uncertainties
 - independent cross check of estimation

$H(b\overline{b}) + E_T^{miss}$ - Finding b-Quarks

- analysis relies on identifying jets from b-quarks (b-tagging)
 - in the evolution of a collision event, quark combinations (hadrons) are formed
 - B-hadrons (containing b-quarks) have "visible" lifetimes
 - their "late" decay leads to secondary vertex

- resolved with excellent tracking resolution
- multi variate techniques used to build a discriminator against light jets

$H(b\overline{b}) + E_T^{miss}$ - Finding b-Quarks

at high E_T^{miss}: H is "boosted" —> b-jets merge into one

- use of variable radius (VR) jets can significantly improve b-tagging efficiency
 - ▶ jets become more narrow with higher pT
 - adapt radius parameter used

Reminder

H(WW)+E_T^{miss}

- not done yet
- most promising: decay of W bosons into pair of quarks
 - larger branching ratio
 - In W—>ℓv additional E_T^{miss} from neutrinos
 - complicates reconstruction of Higgs mass
- boosted regime: <u>one large jet</u>

Apr 26, 2017

Ruth Pöttgen

Interdisciplinary Interpretation

H+ET^{miss}: no comparisons to results of other searches so far

need to develop ways to do that

Summary

 Dark Matter one of the hottest topics of present day (astro)particle physics

complementarity of colliders and direct detection

ole suite of **X+E_T^{miss}** searches king for DM at colliders

 Higgs+E_T^{miss} searches hold great potential for upcoming data

Additional Material

WIMPs, a thermal relic

- the larger the annihilation cross section, the later the freeze-out and the smaller the relic density
 - 'survival of the weak'
 - present day abundance determined by annihilation cross section at time of freeze out

Accelerator Chain

- beams not continuous, but 2808 packets ("bunches") with 10¹¹ protons each
- accelerated in several stages

LH

- circulating in opposite directions in LHC
- brought to collision at the 4 interaction points

- LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced
 - 2 parameters: WIMP mass (\mathbf{m}_{χ}) & suppression scale (\mathbf{M}^*)
 - comparison with direct detection

- LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced
 - 2 parameters: WIMP mass (\mathbf{m}_{χ}) & suppression scale (\mathbf{M}^*)
 - comparison with direct detection

- LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced
 - VALDITY @LHC? • 2 parameters: WIMP mass (\mathbf{m}_{χ}) & suppression scale (\mathbf{M}^*)

 $M_* = \frac{M_{Med}}{\sqrt{g_{\chi}g_{\rm SM}}}$

- comparison with direct detection
- truncation
- for s-channel vector mediator
- minimal validity requirement: $Q_{tr} < M_{Med}$

 $M_* > \frac{Q_{tr}}{\sqrt{g_{\chi}g_{\rm SM}}}$ iteratively remove events that fail this

- LHC Run-1: "traditional" effective field theory (EFT) approach
 - assume mediator too heavy to be produced
 - 2 parameters: WIMP mass (\mathbf{m}_{χ}) & suppression scale (\mathbf{M}^*)

 $M_* = \frac{M_{Med}}{\sqrt{g_{\chi}g_{\rm SM}}}$

- comparison with direct detection
- truncation
- for s-channel vector mediator
- minimal validity requirement: $Q_{tr} < M_{Med}$

 $M_* > \frac{Q_{tr}}{\sqrt{g_{\chi}g_{\rm SM}}}$ • iteratively remove events that fail this

 some comparisons to "simplified model"

Example: photon+E_T^{miss}

to address question of EFT validity: truncation, i.e. remove events with $\sqrt{s} > gM^*$ for various values of g