Heavy neutral leptons

Oleg Ruchayskiy

April 20, 2017

Oleg Rucha	yskiy (NBI)
------------	---------	------

Heavy neutral leptons

= 990

イロト イヨト イヨト イヨト

Standard Model and beyond

- Standard Model of particle physics: 17 particles to describe plethora of accelerator experiments
- Standard Model of cosmology handful of numbers to describe how the Universe has started, developed and arrived to its today's state

The goal of my talk: to present to you a unified model of particle physics **and** cosmology

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Deviations from the Standard Model?

ue: August 2016								
13. Nogusi 2010						∫£ dt =	(3.2 - 20.3) fb ⁻¹	√s = 8, 13 TeV
Model	ί.γ	Jets†	Emiss	∫£ dt[fb	⁻¹]	Limit		Reference
$\begin{split} & \text{ADD } G_{VX} + g/q \\ & \text{ADD } \operatorname{non-resonant} \ell\ell \\ & \text{ADD } \text{ADD } -resonant} \ell\ell \\ & \text{ADD } \text{ADH } here \\ & \text{ADD } \text{BH } here \\ & \text{ADD } \text{ADH } here \\ & \text{ADH } \text{ADH } here \\ & \text{ADH } \text{ADH } here \\ & ADH$	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	21) - 2) 23) - - 1 4b 21b,21J 25,24 22b,24	Yes - - - - Yes Yes Yes	3.2 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.2 13.3 20.3 3.2 3.2	Mo Ma Generation Generation Ma Ma Ma Generation Ma Ma Ma Generation Ma Ma Ma Generation Ma Ma		$\begin{array}{l} a=2\\ a=3\text{MeZ}\\ a=6\\ a=6\\ a=6,\ M_{\odot}=3\text{TeV},\ mt \text{EH}\\ \text{W} = 6,\ M_{\odot}=3\text{TeV},\ mt \text{EH}\\ \text{W} = 6,\ M_{\odot}=3\text{TeV},\ mt \text{EH}\\ \text{A},\ M_{\odot}=0,\ 1\\ \text{A},\ M_{\odot}=1,\ 0\\ \text{A},\ M_{\odot}=1,\ 0\\ \text{A},\ M_{\odot}=1,\ 0\\ \text{TeV},\ 0,\ \text{BB},\ 0,\ 0,\ 0 \end{array}$	1604.87773 1407.2410 ATLAS-CONF-2016-068 1606.02265 1512.02566 1406.4123 1606.03203 ATLAS-CONF-2016-063 ATLAS-CONF-2016-063 1505.0716 ATLAS-CONF-2016-013
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 e, µ 2 r - 1 e, µ 1 - multi-channe 1 e, µ 0 e, µ	- 2b - 1J 2J 2b,0-1j 21b,1J	- Yes Yes - Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	2" mass 2" mass 2" mass W mass W mass V mass W mass W mass	4.05 TeV 2.02 TeV 1.5 TeV 2.4 TeV 2.4 TeV 2.3 TeV 1.22 TeV 1.22 TeV 1.25 TeV	$\frac{g_V = 1}{g_V = 3}$ $\frac{g_V = 3}{g_V = 3}$	ATLAS-CONF-0016-045 1502.07/77 1603.08791 ATLAS-CONF-0016-062 ATLAS-CONF-0016-062 ATLAS-CONF-0016-062 1607.05621 15110.4103 1500.0886
21 qqqq 21 ffqq 21 outt	- 2 e, µ 2(\$\$)/23 e,	2j - - 21 b, 21 j	- Yes	15.7 3.2 20.3	A A A	4.9 TeV	19.9 TeV $q_{14} = -1$ 25.2 TeV $q_{14} = -1$ Cev = 1	ATLAS-CONF-2016-069 1607.03669 1504.04605
Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) ZZ _{XX} EFT (Dirac DM)	0 e,μ 0 e,μ,1 γ 0 e,μ	$\begin{array}{c} \geq 1 j \\ 1 j \\ 1 J, \leq 1 j \end{array}$	Yes Yes Yes	3.2 3.2 3.2	ma ma M,	1.0 TeV 710 GeV 550 GeV	$\begin{array}{l} g_{\eta=0.25,\ g_{\chi}=1.0,\ m(\chi)<250\ {\rm GeV}\\ g_{\eta=0.25,\ g_{\chi}=1.0,\ m(\chi)<150\ {\rm GeV}\\ m(\chi)<150\ {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
Scalar LO 1 ⁴⁴ gen Scalar LO 2 ⁴⁴ gen Scalar LO 3 ⁴⁴ gen	2 e 2μ 1 e,μ	2 2 j 2 2 j 21 b, 23 j	- Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV	p = 1 p = 1 p = 0	1605.06005 1605.06005 1508.04725
$h \Box TT \rightarrow Ht + X$ $h \Box YY \rightarrow Wb + X$ $h \Box BB \rightarrow Hb + X$ $h \Box BB \rightarrow Zb + X$ $h \Box QB \rightarrow Xb + X$ $h \Box QZ \rightarrow WqWq$ $h \Box T_{h \Box} T_{h \Box} \rightarrow WtWt$	1 σ, μ 1 σ, μ 1 σ, μ 2/≥3 σ, μ 1 σ, μ 2(\$\$)/≥3 σ,	$\begin{array}{c} \geq 2 b, \geq 3 \\ \geq 1 b, \geq 3 \\ \geq 2 b, \geq 3 \\ \geq 2 / \geq 1 b \\ \geq 2 / \geq 1 b \\ \geq 4 j \\ z \geq 1 b, \geq 1 j \end{array}$	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass Q mass Q mass T _{6.3} mass	855 GeV 778 GeV 785 GeV 755 GeV 692 GeV 200 GeV	T in (T,B) doublet Y in (B,Y) doublet leaspin singlet B in (B,Y) doublet	1505.04206 1505.04206 1505.04206 1409.5500 1509.04261 ATLAS-CONF-2016-022
Socied quark $q^* \rightarrow q\gamma$ Socied quark $q^* \rightarrow qg$ Socied quark $b^* \rightarrow bg$ Socied quark $b^* \rightarrow Wt$ Socied lepton ℓ^* Socied lepton v^*	1 γ - 1 σr 2 e, μ 3 e, μ 3 e, μ, τ	1j 2j 1b,1j 1b,20j -	- Yes -	3.2 15.7 8.8 20.3 20.3 20.3	g' mass g' mass b' mass b' mass b' mass y' mass	4.4 TeV 5.6 TeV 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	celly ω' and $d', \Lambda = m(q')$ celly ω' and $d', \Lambda = m(q')$ $\xi_{\ell} = f_{\ell} = f_{\ell} = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-089 ATLAS-CONF-2016-080 1510.03864 1411.2591 1411.2591
$\begin{aligned} STC a_T &\to W\gamma \\ JRSM Majorama v \\ figgs triplet H^{**} &\to ee \\ figgs triplet H^{**} &\to fr \\ identities (H^{**} \to fr \\ $	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ	2j 	Yes - - Yes -	20.3 20.3 13.9 20.3 20.3 20.3 20.3 7.0	lay mass M ⁴ mass M ⁴ mass M ⁴ mass gips i insistie particle mass multi-charged particle mass monopole mass	940 GeV 570 GeV 400 GeV 570 GeV 785 GeV 1.34 TeV	$\label{eq:weight} \begin{split} &w(W_R)=2.4\ \text{Tell};\ \text{no-mixing}\\ DY\ \text{production},\ BR[H_1^m\to adj=1]\\ DY\ \text{production},\ BR[H_1^m\to dr]=1\\ a_{max}\to 0.2\\ DY\ \text{production},\ g =5e\\ DY\ \text{production},\ g =1go\ \text{, spin }1/2 \end{split}$	1407.8150 1506.06020 AFLAS-CONF-2016-051 1411.0501 1511.0540 1504.04198 1508.08059
		Model F. y DS more + if (- DS more + if (- <td< td=""><td>Mode L, y Jester 000 mr. + et -</td><td>Abboth 1, y Johns P 200 montant 2 montant 2 montant 1 montant 1 montant 200 montant 2 montant 2 montant 1 montant 1 montant 1 montant 200 montant 1 montant 2 montant 1 montant</td><td>$\begin{array}{$</td><td>Abodi C, y Calley C Calley C 000 500 + 5 (-1) 100 200 100 200 100 200</td><td>Index $I_1 Y_1$ delts $I_2 V_1$ delts $I_2 V_1$ delts $I_1 V_1$ delts<td>Abole L, y John Link Some start z_{abc} z_{abc}</td></td></td<>	Mode L, y Jester 000 mr. + et -	Abboth 1, y Johns P 200 montant 2 montant 2 montant 1 montant 1 montant 200 montant 2 montant 2 montant 1 montant 1 montant 1 montant 200 montant 1 montant 2 montant 1 montant	$ \begin{array}{ $	Abodi C, y Calley C Calley C 000 500 + 5 (-1) 100 200 100 200 100 200	Index $I_1 Y_1$ delts $I_2 V_1$ delts $I_2 V_1$ delts $I_1 V_1$ delts <td>Abole L, y John Link Some start z_{abc} z_{abc}</td>	Abole L, y John Link Some start z_{abc}

- Proton decay

 weakly interacting massive particles?

- Axions?

イロン イヨン イヨン イヨン

- Neutron electric dipole moment
- Neutrinoless double beta decay
- No $\mu \rightarrow e + \gamma$ or $\mu^+ \rightarrow e^+ e^- e^+$

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. +Small-radius (laroe-radius) lets are denoted by the letter i (J).

= 900

Standard Model is consistent up to very high scales

Standard Model is consistent up to very high scales

[1609.02503]

Bezrukov+"Higgs boson mass and new physics" [1205.2893] Degrassi+ [1205.6497]; Buttazzo+ [1307.3536]; Bednyakov [1609.02503]

[1411.1923]

... It is expected that the difference between the MC mass definition and the formal pole mass of the top quark is up to the order of 1 GeV... (from "First combination of Tevatron and LHC measurements of the top-quark mass" [1403.4427])

イロト イポト イヨト イヨト

Current status of particle physics

 \bigcirc All the predicted particles are discovered (Higgs was the last of such particles)

The model is mathematically consistent. Within experimental uncertainties on the top mass, the SM can be valid quantum field theory up to the very high energy scale, possibly all the way to the Planck scale $\frac{\hbar}{M_{\text{Plank}}c} \sim \frac{GM_{\text{Plank}}}{c^2}$

All the discovered particles/phenomena are accounted for by the model?

(日) (同) (日) (日)

All the discovered phenomena are accounted for?

Why do we think that there should be any "new physics" not described by the Standard Model of particle physics? There are different motivations for that:

Particle physics

- neutrino masses and oscillations

Cosmology

Particle physics (coupled to Einstein gravity) applied to the Universe as a whole faces the challenges of

- dark matter
- matter-antimatter asymmetry of the Universe
- inflation

Deep theoretical questions

- Gauge hierarchy problem
- Strong CP-problem
- Cosmological constant problem

Outline

1 Neutrino masses and heavy neutral leptons

- Heavy neutral leptons and dark matter
- 3 Dark matter and structure formation
- 4 Baryogenesis
- 5 Phenomenology of HNLs
- 6 SHiP

イロン イ団と イヨン イヨン

How to write neutrino mass?

- Neutrinos are massive
- Mass is something that mixes left and right chirality
- Neutrinos are always left-chiral
- For neutrino one can write a Majorana mass term

$$\mathscr{L}_{\text{Majorana}} = -\frac{1}{2} \overline{\mathbf{v}} M_M \mathbf{v}^c + \text{h.c.}$$

couples left neutrino v and its right anti-particle v^c .

• if one constructs a Majorana spinor:

$$\chi = rac{v+v^c}{\sqrt{2}}$$
 so that $\chi^c = \chi$

• ... then the mass term (1) is simply: $\mathscr{L}_{Majorana} = M \bar{\chi} \chi$

(1)

イロト イポト イヨト イヨト

Neutrino Majorana mass

- Neutrino carries no electric charge, but it is not neutral
- ... neutrino is part of the SU(2) doublet $L = \begin{pmatrix} v_e \\ e \end{pmatrix}$

• ... and carries hypercharge
$$Y_L = -1$$

- What we call neutrino is actually $v = (L \cdot \tilde{H})$ (where $\tilde{H}_a = \varepsilon_{ab} H_b^*$)
- Therefore neutrino Majorana mass term is (Weinberg operator)

Neutrino Majorana mass =
$$\frac{\boldsymbol{c}(\bar{L} \cdot \tilde{H}^{\dagger})(L^{c} \cdot \tilde{H})}{\boldsymbol{\Lambda}}$$

Oleg Ruchayskiy (NBI)

(2)

Introduce new gauge-singlet fermions N

- States that propagate (mass eigenstates) do not have a definite weak charges oscillations
- Neutrinos are light because
 active-st
 m_{Dirac} ≪ M:

$$m_{v} \simeq \frac{(m_{\text{Dirac}})^2}{M} = U^2 M$$

• active-sterile mixing angle

$$U=rac{m_{
m Dirac}}{M}\ll 1$$

イロン 人間 とくほ とくほう

The new particle is called "Sterile neutrino" or "heavy neutral lepton" or $\ensuremath{\mathsf{HNL}}$

Extension of Standard Model with heavy neutral leptons

Asaka & Shaposhnikov'05. Review: Boyarsky+'09

Sharing success of the Standard Model at accelerators and resolving major BSM problems: Neutrino masses and oscillations; Baryon asymmetry of the Universe; Dark matter

Oleg Ruchayskiy (NBI)

Heavy neutral leptons

Lund University 12 / 59

HNL parameters and neutrino oscillations

For every point in the white region, HNLs with such mass/interaction that can explain the phenomenology of neutrino oscillations

- \mathcal{N} HNLs bring $7 \times \mathcal{N} 3$ new parameters
- With the **full knowledge** of PMNS and active neutrino masses/phases we will be able to determine

7 out of 11 parameters $(\mathcal{N} = 2)$ **9** out of 18 parameters $(\mathcal{N} = 3)$

• Undetermined parameters are: \mathscr{N} Majorana masses + some ratios of Yukawas (for example, one replace $Y_{\alpha I} \leftrightarrow Y_{\alpha J} (M_I/M_J)^{1/2}$ for some pairs $I \neq J$.)

< □ > < @ > < E > < E > E]

Mass of heavy neutral leptons?

- © No information from neutrino oscillations
 - What can other BSM phenomena tell us about the HNLs mass?

Oleg Ruchayskiy (NBI)

< ロ > < 同 > < 三 > < 三

Outline

2 Heavy neutral leptons and dark matter

Dark matter and structure formation

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dark Matter in the Universe

Astrophysical evidence:

Expected: mass_{cluster} = $\sum \text{mass}_{\text{galaxies}}$ Observed: 10² times more mass confining ionized gas

Lensing signal (direct mass measurement) confirms other observations

Cosmological evidence:

Jeans instability turned tiny density fluctuations into all visible structures

Neutrino dark matter

Neutrino seems to be a perfect dark matter candidate: neutral, stable, massive, abundantly produced in the early Universe

Cosmic neutrinos

- We know how neutrinos interact and we can compute their primordial number density $n_v = 112 \,\mathrm{cm}^{-3}$ (per flavour)
- To give correct dark matter abundance the sum of neutrino masses, $\sum m_v$, should be $\sum m_v \sim 11 \,\text{eV}$
- Modern-day sum on neutrino masses is $\mathcal{O}(0.2 \text{eV})$ so neutrinos are only tiny fraction of dark matter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Neutrino dark matter I

S. Tremaine and J. Gunn (1979) Phys. Rev. Lett. "Dynamical Role of Light Neutral Leptons in Cosmology"

- The smaller is the mass of Dark matter particle, the larger is the number of particles in an object with the mass M_{gal}
- Average phase-space density of any fermionic DM should be smaller than density of degenerate Fermi gas

$$\frac{M_{\rm gal}}{\frac{4\pi}{3}R_{\rm gal}^3}\,\frac{1}{\frac{4\pi}{3}v_{\infty}^3} \le \frac{2m_{\rm DM}^{-4}}{(2\pi\hbar)^3}$$

• Objects with highest phase-space density – dwarf spheroidal galaxies – lead to the lower bound on the fermionic DM mass [[0808.3902]]

 $m_{\rm DM}\gtrsim 300-400\,{\rm eV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Two roads from neutrino dark matter

Dark matter cannot be light and weakly interacting at the same time

Alternatives:

Light and necessarily **super-weakly** interacting — **HNL**

Heavy	and	weakly	interacting	_
WIMP				

イロト 不得 と イヨト イヨト

... and of course other, completely orthogonal ideas, like axions

HNLs as dark matter

- Can be light (down to Tremaine-Gunn bound)
- Can be warm (born relativistic and cool down later)
- Can be decaying (stability is not required)
- Can be produced in correct amounts (via mixing with neutrinos)

Parameter space of HNL dark matter I

- Non-observation of decay line $N \rightarrow \gamma + v$

- Lifetime ≫ Age of the Universe (dotted line)
- Contribution to neutrino masses

 $m_{\odot} \sim U^2 M$

Parameter space of HNL dark matter II

 Production via non-resonant mixing
 [Dodelson & Widrow'93; Asaka, Laine, Shaposhnikov'06]

 Liouville bound (neglecting feedback from baryons)
 [Boyarsky, O.R. et al.'08; Gorbunov+'08]

 Lyman-α bound
 [Boyarsky, Lesgourgues, O.R., Viel'08]

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Production via mixing and decay signal depend on the same mixing angle U^2
- X-ray bounds grow very fast with mass (flux $\sim M_N^5$)

Parameter space of HNL dark matter III

In summary

- HNL DM is light (1-50 keV) if there are no other particles
- Yukawa of HNL DM are tiny ($\mathcal{O}(10^{-10})$ or below)

イロト イヨト イヨト イ

Reminder: 3.5 keV line story

Two groups reported an identified feature in the X-ray spectra of dark matter-dominated objets

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH², ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIN², AND SCOTT W. RANDALL¹ ¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138. ² NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Submitted to ApJ, 2014 February 10

ApJ (2014) [1402.2301]

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky¹, O. Ruchayskiy², D. Iakubovskyi^{3,4} and J. Franse^{1,5}

¹Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

²Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

PRL (2014) [1402.4119]

- Energy: 3.5 keV. Statistical error for line position $\sim 30-50$ eV.
- Lifetime: $\sim 10^{28}$ sec (uncertainty: factor ~ 3)
- Possible origin: decay $DM \rightarrow \gamma + \nu$ (fermion) or $DM \rightarrow \gamma + \gamma$ (boson)

Galactic center – a non-trivial consistency check Boyarsky, O.R.+ PRL 115, 161301

- Observation from M31 puts a lower bound on the GC flux
- Non-observations from the Milky Way outskirts puts an **upper** bound on the GC flux
- The observed signal fits into the range

Subsequent works

For overview see e.g. [1602.04816] "A White Paper on keV Sterile Neutrino Dark Matter"

- Subsequent works confirmed the presence of the 3.5 keV line in some of the objects
 Boyarsky O.R.+, lakubovskyi+; Franse+;
 Bulbul+; Urban+; Cappelluti+
- challenged it existence in other objects Malyshev+; Anderson+; Tamura+; Sekiya+
- argued astrophysical origin of the line Gu+; Carlson+; Jeltema & Profumo; Riemer-Sørensen; Phillips+

[1507.06655]

A common explanation for every detection and non-detection?

 When comparing bounds from different objects one should be careful — dark matter content in each of them uncertain by a factor 2 – 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Line in NuStar

Milky Way halo. Neronov & Malyshev [1607.07328]. Also Ng+ [1609.00667]

- The 3.5 keV is present in the spectrum with 11σ significance
- The spectrum of NuStar ends at 3 keV, so this is a lower edge of sensitivity band
- The 3.5 keV line has been previously attributed to reflection of the sunlight on the telescope structure
- However, in the dataset when Earth shields satellite from the Sun the line is present with the same flux

• • • • • • • • • • • • •

Line in Chandra

Cappelluti+'17

- Most recently: 10 Msec of Chandra observation of Chandra Deep Fields
- 3σ detection of a line at ~ 3.5 keV
- If interpreted as dark matter decay

 this is a signal from Galactic halo outskirts (~ 115° off center)
- Chandra has mirrors made of Iridium (rather than Gold as XMM or Suzaku) – absorption edge origin becomes unlikely

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By now the 3.5 keV line has been observed with 4 existing X-ray telescopes, making the systematic (calibration uncertainty) origin of the line highly unlikely

Next step for 3.5 keV line: resolve the line

Perseus center spectrum [1607.07420]

- Astro-H/Hitomi new generation X-ray spectrometer with a superb spectral resolution
- Launched February 17, 2016
- Cost few weeks later
- Before its failure observed the center of Perseus galaxy cluster
- The observations was in calibration phase (additional

Oleg Ruchayskiy (NBI)

What did we learn with existing Hitomi data?

- Due to its super energy resolution, *Hitomi* can distinguish between atomic line broadening (thermal velocities $\sim 10^2 \, \text{km/sec}$) and decaying dark matter line broadening (virial velocity $\sim 10^3 \, \text{km/sec}$)
- Even the short observation of Hitomi showed that Potassium, Clorium, etc. do not have super-solar abundance in Perseus cluster \Rightarrow 3.5 keV line is not astrophysical
- Bounds much weaker for a broad (dark matter) line \Rightarrow not at tension with previous detections
 - This does not seem to be astrophysics (Hitomi spectrum)
 - This does not seem to be systematics (4 different instruments)
 - ???

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Future of decaying dark matter searches in X-rays

Another Hitomi

JAXA is planning to send a replica of Hitomi satellite (within about 2 years)

Microcalorimeter on sounding rocket (2017)

- Large field-of-view and very high spectral resolution
- Can resolve narrow lines from diffuse sources
- Flying time $\sim 10^2$ sec

・ロト ・回ト ・ヨト ・

Athena+

- Large ESA X-ray mission (2028) with X-ray spectrometer (X-IFU)
- Very large collecting area (10× that of XMM)

3

Outline

- Neutrino masses and heavy neutral leptons
- Heavy neutral leptons and dark matter
- Oark matter and structure formation
 - 4 Baryogenesis
- 5 Phenomenology of HNLs
- 6 SHiP

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Warm dark matter

- Particles are born relativistic \Rightarrow they do not cluster
- Relativistic particles free stream out of overdense regions and smooth primordial inhomogeneities

 Particle velocities means that warm dark matter has effective pressure that prevents small structure from collapsing

<ロ> (日) (日) (日) (日) (日)

At non-linear scales

COCO Warm simulation Bose+'15 HNL dark matter:

- Same structures as in CDM Universe at scales of Mpc and above ⇒ no signatures in CMB or galaxy counts
- Decreasing number of small galaxies around Milky Way
- Decreasing number of small satellite galaxies within Milky Way halo
- Can help with "too big to fail" or "missing satellites" problems

- ◆ □ ▶ ◆ 三 ▶ ◆ 三 ⊨ ● の < ○

Oleg Ruchayskiy (NBI)

Lyman-lpha forest and power spectrum

Lyman- α forest data

Viel+'13

Suppression in the flux power spectrum

-

・ロト ・回ト ・ヨト ・
Suppression in the flux power spectrum

The suppression of the flux power spectrum is visible in high-resolution HIRES/MIKE dataset

・ロン ・回 と ・ ヨン・

Warm dark matter or warm hydrogen? Garzilli, Boyarsky, Ruchayskiy [1510.07006]

Suppression in the flux power spectrum may be due to

- Temperature at redshift z (Doppler broadening) increases hydrogen absorption line width
- Pressure at earlier epochs (gas expands and then needs time to recollapse even if it cools)
- Warm dark matter

Data prefers cold intergalactic medium around redshift $z = 5 \Rightarrow$ Observed Lyman- α power spectrum suppression is due to **something else**?

High-resolution Lyman- α forest and HNL dark matter Garzilli, Boyarsky, Ruchayskiy [1510.07006]

- Best fit **thermal relic** mass = 2.1 keV
- Corresponds to resonantly produced sterile neutrino with $M_N = 7$ keV and lepton asymmetry $L = 11 \times 10^{-6}$
- 3.5 keV line, interpreted as sterile neutrino DM, gives range of lepton asymmetries L = 8 - 12

(日) (同) (三) (三)

By accident (or maybe not) the HNL dark matter interpretation of 3.5 keV line predicts exactly the amount of suppression of power spectrum observed in HIRES/MIKE (and fully consistent with all other structure formation bounds)

Future of Lyman-lpha on

- The high-resolution Lyman-α spectra show suppression – due to thermal effects or due to warm dark matter
- We have only crude information about the reionization history and temperature of gas at reionization epoch
 - The measurement of gas temperatures at redshifts $z \gtrsim 5$ has high discovery potential
- This can be done (work in progress)

Summary: Heavy neutral leptons as dark matter

- HNL DM is light (1-50 keV)
- Yukawa of HNL DM are tiny (𝒴(10⁻¹⁰) or below)
- Large ($\sim 10^6 \eta_{baryon}$) late-time lepton asymmetry is required if we want to resolve BSM problems only with heavy neutral leptons

Structure formation bounds (satellite counts / Lyman- α) have still uncontrolled systematics and no numbers from them can be taken "at face value"

イロト イヨト イヨト イヨト

Outline

- Neutrino masses and heavy neutral leptons
- 2 Heavy neutral leptons and dark matter
- Dark matter and structure formation

4 Baryogenesis

5 Phenomenology of HNLs

6 SHiP

Baryogenesis

Cosmology tells us

Dark matter tells us:

Need "something like neutrino", but heavier (Tremaine & Gunn bound) and even weaker interacting (not to overclose the Universe)

Baryon asymmetry tells us:

Need "something like neutrino", but even weaker interacting (not to enter thermal equilibrium in the early Universe)

- ∢ ≣ →

Sakharov conditions

Sakharov (1967)

To generate baryon asymmetry of the Universe 3 conditions should be satisfied

- I. Baryon number should not be conserved
- II. C-symmetry and CP-symmetry must be broken
- **III.** Deviation from thermal equilibrium in the Universe expansion

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Baryogenesis with HNLs

Heavy neutral leptons provide

- Additional sources of CP-violation
- Out-of-equilibrium conditions (decays or oscillations)
- Violation of the lepton number (and B L)

Wide class of scenarios known as leptogenesis

Thermal leptogenesis: $M_N \sim 10^{12} \text{ GeV}$

Fukugita & Yanagida'86

Resonant leptogenesis: $M_{N_1} \approx M_{N_2} > M_W$ and $|M_{N_I} - M_{N_J}| \ll M_N$

Pilaftsis, Underwood'04-'05

Leptogenesis via oscillations: 2 or 3 HNLs, $M_N < M_W$ and $|M_{N_1} - M_{N_2}| \ll M_{N_1,N_2}$ Akhmedov, Smirnov & Rubakov'98

Asaka & Shaposhnikov'05

(日) (周) (王) (王) (王)

...

Leptogenesis via oscillations

Akhmedov+'98; Asaka & Shaposhnikov'05; Canetti & Shaposhnikov'11;Asaka+'08-'16; Canetti+'12; Abada'15; Hernández+'15-'16; Drewes+'12,'15,'16; Hambye & Teresi'16 Rates: Laine+'08,'14,'15,'16

Shuve & Yavin'14

- Out-of-equilibrium CP-violating oscillations of HNLs allow to generate effective lepton number in the active neutrino sector
- Generation of lepton asymmetry continues down to $T \sim O(10)$ GeV, reaching levels $\gg \eta_{baryon}$

イロト イポト イヨト イ

Possible range of masses

• Leptogenesis via oscillations can occur for masses down to tens of MeV

• Requires degeneracy in masses $\Delta M/\bar{M} \ll 1$

HNL masses from leptogenesis

- HNLs responsible for neutrino masses and leptogenesis can be as light as 10 MeV or as heavy as 10^{12} GeV
- There exists only one mechanism (leptogenesis via oscillations) that generates significant lepton asymmetry below sphaleron freeze-out times
- Large lepton asymmetry is required if we want to explain dark matter, baryogenesis and neutrino oscillations with three HNLs only
- The evolution of lepton asymmetry in the primordial plasma is under investigation

We need to identify the parts of the parameter space where not only correct baryon asymmetry but also large lepton asymmetry is produced

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Outline

- Neutrino masses and heavy neutral leptons
- 2 Heavy neutral leptons and dark matter
- 3 Dark matter and structure formation
- 4 Baryogenesis

5 Phenomenology of HNLs

6 SHiP

Properties of sterile neutrinos

Heavy neutral lepton inherits the interactions from neutrinos

Charged current-like:
$$\tilde{\mathscr{L}}_{CC} = \frac{g U}{\sqrt{2}} \bar{e} \gamma^{\mu} (1 - \gamma_5) \mathbf{N}^c W_{\mu}$$

Neutral current-like: $\tilde{\mathscr{L}}_{NC} = \frac{g U}{\cos \theta_W} \bar{v} \gamma^{\mu} (1 - \gamma_5) \mathbf{N}^c Z_{\mu}$

Typical values of parameters

$$G_F \longrightarrow U \times G_F$$

・ロト ・回ト ・ヨト

Yukawa coupling
$$\sim \left(\frac{M_N m_V}{\langle \Phi \rangle^2}\right)^{1/2} \approx 4 \times 10^{-8} \left(\frac{M_N}{1 \text{ GeV}}\right)^{1/2}$$

Mixing angles $U^2 = \frac{m_V}{M_N} \approx 5 \times 10^{-11} \left(\frac{1 \text{ GeV}}{M_N}\right)$

How to search for HNLs

Shrock+'80s; Gronau+'84; Gorbunov & Shaposhnikov'07; Atre et al.'09 Review: SHiP Physics Case'15

- *M_N* < *few* MeV only *U_e* mixing can be probed (kink searches)
- 𝒴(10)MeV ≤ M_N ≤ M_K − intensity frontier experiments (peak searches)
- 𝒪(100)MeV ≤ 𝑘_N ≤ 𝑘_B − intensity frontier experiments (fixed target experiments)
- *M_N* ≥ *few* GeV − LHC searches (displaced vertices; multilepton final states; same sign same flavour leptons, ...)

Helo+'15-'16; Izaguirre & Shuve'15; Ng+'15; Antush+'15-'16; Dib & Kim'15;

Gado+'15; Dev+'15; Cvetic+'15-'16

Z-factories (FCC-ee)

<ロ> (日) (日) (日) (日) (日)

Challenge

• Production:

 $N_{\rm produced} \propto |U|^2 \times N_v$

typical $|\textit{U}|^2 \sim 10^{-10} \div 10^{-6}$

• Decay lifetime:

$$I_N = c\tau_N \propto \frac{\dots}{G_F^2 M_N^5 |U|^2}$$

- 100s of meters for $M_N=1~{
 m GeV}$ and $|U|^2\sim 10^{-8}$
- Probability to decay over distance L: $p(L) = 1 \exp(-L/I_N)$
- Number of events in the detector with length $L_{\rm det} \ll I_N$

$$N_{\rm detected} \propto rac{L_{
m det}}{I_N} \propto |U|^2$$

• Probability $\propto |U|^4$ unless the particle decays $\sim 100\%$ inside the detector

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Bounds on sterile neutrino coupling U^2_{μ} From "SHiP Physics Paper" [1504.04855]

Oleg Ruchayskiy (NBI)

Lund University 52 / 59

Outline

- Neutrino masses and heavy neutral leptons
- 2 Heavy neutral leptons and dark matter
- 3 Dark matter and structure formation
- 4 Baryogenesis
- 5 Phenomenology of HNLs

SHiP

Finding superweakly interacting particles in lab

Proposal to Search for Heavy Neutral Leptons at the SPS

W. Bonivento (INFN, Cagliari & CERN), A. Boyarsky (Leiden U.), H. Dijkstra (CERN), U. Egede (Imperial Coll., London), M. Ferro-Luzzi, B. Goddard (CERN), A. Golutvin (Imperial Coll., London), D. Gorbunov (Moscow, INR), R. Jacobsson, J. Panman (CERN) M. Patel (Imperial Coll., London), O. Ruchayskiy (LPHE, Lausanne), T. Ruf (CERN), N. Serra (Zurich U.), M. Shaposhnikov (LPHE, Lausanne), D. Treille (CERN) <u>Hide</u>

Oct 7, 2013 - 21 pages

CERN-SPSC-2013-024, SPSC-EOI-010 e-Print: arXiv:1310.1762 [hep-ex] | PDF

Abstract (arXiv)

A new fixed-target experiment at the CERN SPS accelerator is proposed that will use decays of charm mesons to search for Heavy Neutral Leptons (HNLs), which are righthanded partners of the Standard Model neutrinos. The existence of such particles is strongly motivated by theory, as they can simultaneously explain the baryon asymmetry of the Universe, account for the pattern of neutrino masses and oscillations and provide a Dark Matter candidate. Cosmological constraints on the properties of HNLs now indicate that the

Several years ago an idea of a new dedicated experiment to search for steril neutrinos (aka "heavy neutral leptons") got crystallized

イロト イポト イヨト イヨト

SHiP : Search for Hidden particles

Search for rare particles becomes official CERN theme

It took then 1 year to create a collaboration

• About 250 members of the SHiP collaboration from 44 institutions worldwide

• SHiP is now an official CERN project

Timeline

•	Approval by CERN	2019
•	Data taking	2024

<ロト <回ト < 回ト < 回ト

Super Proton Synchrotron (SPS)

- Need a lot of particles, decaying to neutrinos
 - Muons? $(\mu
 ightarrow e + \bar{v}_e + v_\mu)$ light
 - Pions? $(\pi
 ightarrow e + ar{v}_e, \ \pi
 ightarrow \mu + ar{v}_\mu)$ Yes! Below 140 MeV
 - Kaons? $(K \rightarrow e + \bar{v}_e, K \rightarrow \mu + \bar{v}_{\mu})$ Yes! Below 490 MeV (NA62)
 - D-mesons $(D^+ = |c\bar{d}\rangle, D_s^+ = |c\bar{s}\rangle, D^0 = |c\bar{u}\rangle)$ Yes! Below 1.8 GeV
- **②** To produce *D*-mesons we need to produce charmed quarks. $M_c \simeq 2$ GeV

$$N_{\rm mesons} = 2 \times X_{q\overline{q}} \times N_{PoT}$$

- Want to increase N_{PoT} high intensity proton beam
- Want to increase $X_{q\bar{q}}$ fraction of heavy quarks' production high energy beam
- High energy proton beam 400 GeV
- 4×10^{19} PoT (protons on target per year). 2×10^{20} PoT over 5 years
- Beam intensity: 4×10^{13} protons/sec
- Produces a lot of c-quarks: X ~ 10⁻³ Oleg Ruchayskiy (NBI)

SHiF

Step by step overview

SHiP

SHiP

SHiP physics case paper

From: A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

SHiP

Classification of vector portals; Kinetic mixing; Anomaly-free gauge groups $(B - L, L_{\mu} - L_{\tau} \text{ etc})$; Other froms of vector portals.; Chern-Simons portal; Matter states charged under new U(1); Higgs mechanism in the dark sector : Supersymmetric U(1)' models : Self-intereaction of dark matter via light mediators : Production and detection of kinetically mixed dark photons and baryonic vectors. Scalar portal : Hidden Valleys ; Light scalars in supersymmetry ; Singlet extensions ; Additional Abelian gauge groups; Models with *R*-parity violation : Linear scalar portals: Higgs-scalar mixing : Existing experimental limits : Probing Exotic Higgs Decays at SHiP ; Hidden sector scalars ; Hidden sector fermions and vectors ; Pseudoscalar portals ; Scalar portals and Dark Matter ; Scalar as a mediator between DM and the SM ; Scalar as a DM candidate ; Dark pions ; Light inflatons ; Neutrino portal ; Heavy neutral leptons ; Left-right symmetric models ; Left-right symmetric models with GeV-scale HNLs ; Inverse seesaw and GeV scale singlet fermions ; ALPs and other PNGBs at SHiP ; Connection to Dark Matter ; ALPs coupled to two gauge bosons ; ALPs coupled to SM fermions ; SUSY; A Very Light Supersymmetric Neutralino and R-Parity Violation ; Light particles from the SUSY breaking sector; Origin of light sgoldstinos Light Dirac gauginos; SUSY vector portal I: Hidden Photinos ; R-parity conserving photinos ;

Lund University 58 / 59

Conclusions

Neutrino oscillation between three generations

SHiP

三日 のへで

イロン イヨン イヨン イヨン

Outline

Neutrinoless double beta decay

9 Draco observation

🔟 Local Universe bounds

三日 のへの

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Outline

8 Neutrinoless double beta decay

9 Draco observation

🔟 Local Universe bounds

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Neutrinoless double beta decay

 If neutrinos have Majorana mass, the neutrinoless double β-decay is possible

Neutrino oscillations define the value of

 $m_{\beta\beta}^{(\nu)} = \left|\sum_{i} m_{i} V_{ei}^{2}\right|$

[Phys. Rev. Lett. 117, 082503 (2016)]

where V_{ei} is the elements of the PMNS matrix, connecting charge (flavour) and mass (propagation) neutrino states:

$$|\mathbf{v}_{\alpha}\rangle = \sum_{i} V_{\alpha i} |\mathbf{v}_{i}\rangle$$

m_i are the masses

$0 \nu \beta \beta$ and Heavy Neutral Leptons

Bezrukov'05; Benes+'05; Blennow+'10; Asaka+'11; Mitra+'12; Lopez-Pavon'12; Asaka & Eijima'13; Faessler+'14; Hernández+'16; Drewes & Eijima'16; Asaka+'16 **Review**: Dell'Oro+'16

• Effective Majorana mass in type-I seesaw

$$m_{\beta\beta}^{(seesaw)} = \left| \sum_{i}^{\nu} m_i V_{ei}^2 + \sum_{I}^{HNL} f_{\beta}(M_I) \frac{\langle \Phi \rangle^2 Y_{\alpha I}^2}{M_I} \right|$$

• $f(M_{\rm I})$ is the nuclear matrix element, approximately (c.f. Faessler+'14)

$$f(M_{\rm I}) pprox rac{\langle p
angle^2}{\langle p
angle^2 + M_{\rm I}^2}, \quad \langle p
angle \sim 100 \, {
m MeV}$$

• Seesaw relation in these terms

$$\sum_{i}^{light} m_i V_{ei}^2 + \sum_{\rm I}^{heavy} \frac{\langle \Phi \rangle^2 Y_{\alpha \rm I}^2}{M_{\rm I}} = 0$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

HNLs enhancing $0\nu\beta\beta$ signal

Hernández+'16

• Due to the freedom in active-sterile Yukawa matrix, several HNL (even close in mass) can enhance the rate of $0\nu\beta\beta$ decay as compared to the $m^{(\nu)}_{\beta\beta}$ while still satisfying requirements of successful baryogenesis

Hernández+'16. Also Drewes & Eijima'16, Asaka+'16

Oleg Ruchayskiy (NBI)

Outline

Neutrinoless double beta decay

Oraco observation

🔟 Local Universe bounds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Analysis of Draco dSph

Ruchayskiy+ MNRAS (2016) [1512.07217]

- Dwarf spheroidals are "galaxies swallowed by our Galaxy"
- Perfect observational targets:
 - dense
 - dark $(M/L \sim 10^2 10^3)$
 - compact (typical sizes 5' 30')
 - nearby (distances 30 100 kpc)
- The line is detected in the spectrum of Draco dSph with low significance $(\Delta \chi^2 = 5.3)$
- Line flux/position are consistent with previous observations
- The data is consistent with DM interpretation for lifetime $\tau_{\text{DM}} > (7{-}9) \times 10^{27} \, \text{sec}$

• • • • • • • • • • • • •

Outline

7 Backup slides

8 Neutrinoless double beta decay

9 Draco observation

三日 のへの

ヘロン 人間 とくほど 人間と
Satellite number and properties

- Warm dark matter erases substructures compare number of dwarf galaxies inside the Milky Way with "predictions"
- Simulations: The answer depends how you "light up" satellites
- Observations: We do not know how typical Milky Way is

Current status of structure formation bounds from the Local Universe

- Connection "dark structures" ↔ "visible structures" depends on (yet unknown) way to implement baryonic feedback
- Simulation to simulation (or even halo-to-halo) scatter is quite large and affects the conclusions
- We do not know how typical is our Galaxy, our Local Group, etc.
- You cannot "rule out" your warm dark matter model with these observations
- You can only check that your model fits the data under "reasonable" assumptions about baryonic physics

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

At non-linear scales

COCO Warm simulation Bose+'15 HNL dark matter:

- Same structures as in CDM Universe at scales of Mpc and above ⇒ no signatures in CMB or galaxy counts
- Decreasing number of small galaxies around Milky Way
- Decreasing number of small satellite galaxies within Milky Way halo
- Can help with "too big to fail" or "missing satellites" problems

- ▲ □ ▶ ▲ 三 ▶ ▲ 三 ■ ■ ● ● ● ●

Oleg Ruchayskiy (NBI)

Heavy neutral leptons

Lund University 11 / 11