HIBEAM:

High Intensity Baryon Extraction and
Measurement
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The status of particle physics today

o Data 201142012
SM Higgs boson mH=126.8 GeV (fit)

--------- Bkg (4th order polynomial)
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The LHC has observed the Higgs boson and so far confirmed the correctness of
the Standard Model.

Many important questions remain unanswered.

HIBEAM could comprise a suite of experiments to address many of these questions.



(1) Baryon number violation

We have never seen a process violate baryon number

(egN+N —-7z+7m , poe+x)
But baryon number is not a "sacred" quantity like electric charge and energy.

Our best theory, the Standard Model, predicts it is rarely violated .

It becomes copiously violated when the Standard Model is extended.
Baryon number violation is needed to explain the matter-antimatter symmetry.

Symbiosis between baryon number and lepton number violation but we must

experimentally understand nature's selection rules.



Complementary B, L-violation observables
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e Theory
* Baryogenesis via BNV (Sakharov condition)

 Sensitive to new mass scales way beyond the LHC (up to ~10%°
GeV)

e Complementarity with open questions in neutrino physics
* Predicted in theories beyond the SM, eg supersymmetry.

* Experiment
* One of the few means of looking for pure BNV
e Stringent limit on stability of matter



(2) Dark matter

Dark matter accounts for ~96% of the Universe's mass budget.
The main paradigm (WIMPs) has not produced evidence for DM
after 40 years of searches.

We do not know what dark matter is.



Mirror neutrons

"Hidden/mirror" sector
Restores parity symmetry.
Possible mixing for Q =0 particles, eg, n —» n'

Mirror matter : dark matter candidates (m< 10 GeV)

Can explain 50 neutron lifetime discrepancy
seen in bottle and beam experiments.
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(3) Charge-parity violation
We do not understand where the antimatter has gone.
CP-violation is needed as a condition for producing baryogenesis.

We do not understand why CP is weakly violated (if at all) in the strong force.
A non-zero dipole moment arises from CP violation.
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(4) Confinement

We understand well the interactions of quarks involving a large
momentum transfer and short distances : ¢ >O(GeV), r<O(fm)

We do not understand well soft momentum transfers and long distances.
= Quark confinement i.e. why we never see individual quarks.
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nnbar@ESS
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Sensitivity =(free neutron flux at target)x P(n — ) < N, 1*

Cold neutrons (E<5 meV, v<1000ms ™)
® Low neutron emission temperature (50-60 K)
® Supermirror transmission and transit time

® Large beam port option, large solid angle to cold moderator.

Ultimate increase in sensitivity for P ~ 10° compared to previous experiment (ILL)

e Neutron guiding, larger opening angle, higher flux, particle ID technologies, running time.




The need for magnetic shielding
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Magnetic field suppresses neutron-antineutron conversion.

High

efficiency for quasi-free neutrons up to ~10 nT

Maximum tolerable field to be determined.



Detector

Expectn + N —~ 57 at \/= ~ 2 GeV.
Detector design for high efficiency (& > 0.5)

and low bg (~ 0). Calorimeter

Cosmic
veto

AN

Tracker >TOF

=

e Annihilation target - carbon sheet

® Tracker - vertex reconstruction —
® Time-of-flight system
e beam — membrane
- scintillators around tracker. Vacuum

® Calorimeter

- lead + scintillating and clear fibre.

e Cosmic veto - plastic scintillator pads

® Trigger - Track and cluster algorithms




HIBEAM
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* High-m mirrors/focusing
* Magnetic shielding
* Neutron monitoring
* Detector
* BG
Physics
* Improve sensitivity wrt ILL
e Search for mirror neutron regeneration
* Other possible experiments (beam EDM, weak nucleon interactions, sensitivity to
new long distance forces)



HIBEAM:n - n
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Simulation of neutron production and propagation

towards target
MNCPX used to calculated neutrons in BF2 upper
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Reflector Geometry

Eq. of ellipsoid centered at z=Az
and symmetric about rotation in z

The ellipse can be described
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3-D visualization

HIBEAM ellipsoid:

a=40cm

f=27m

Start-Stop =2m-5.5m

Focus 1(y,x) = (13.5 cm, 12cm)
Super mirror m=7




Effect of m=7 |
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When a neutron is reflected off the
elliptical surface its transverse velocity
is calculated and its weight is
decreased by the reflection coefficient
according to the data file (swiss
neutronics 2012).

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

m=7 assumed. =ity

Figure 1: Reflectivity profiles of Ni/Ti & non-depolarising
supermirror coatings 2 < m < 8.
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Performance of the Reflector
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At 55 m the reflector provides an additional flux of ~1012§ within a
cylinder of 0.5 m diameter.

This effectively makes the source 5 times brighter



Spectrum of Reflected Neutrons

Source Spectrum for LBP
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The super mirror reflector is only able to reflect neutrons with low transverse momentum.

This essential cuts the reflected spectrum at 2000 m/s providing a colder beam.



Detector simulation

n+C—=>"C+rx's




HIBEAM: n->n’->n
Neutron Mirror Neutron Regeneration Experiment
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Mirror neutrons
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Neutron EDM

Ramsey Signal

1]
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Neutron beam EDM searches limited due to (vx E) systematic
= effective magnetic field and a false EDM signal.

Neutron
velocity v

Electric
field E

Can be directly measured with high intensity pulsed source (ESS).
= Competitive nEDM sensitivity (F. Piegsa).



Probing the strong force

Weak nucleon-nucleon interactions.
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Slow neutrons - zero electric charge, small QDR Sty
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n-’He parity violation
Exotic spin-dependent neutron interaction experiments.

Inexpensive.
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Issues

e Large Beam Port is an essential asset

— 10° x 10° aperture open in the inner shielding layer of
the monolith. Must be reserved now — it cannot be
replaced/improved later.

* Full nnbar requires ~400 ILL units per year
— large area moderator (LD2)

— BF2 lower moderator use (more expensive) lobed
reflector but ~200-250 ILL per year

* We sit outside the standard ESS program. Need a
path towards a prospective approval.



Tentative timescales
 HIBEAM

— Early physics

— Several experiment in parallel (nnbar and mirror
neutrons)

— R&D for full experiment
— Up to ~2025

* Aim for full experiment in 2025 with proposal
~2020



nnbar@ESS —> Hibeam
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Particle Physics Strategy

European:

h) Experiments studying quark flavour physics, investigating dipole moments, searching for
charged-lepton flavour violation and performing other precision measurements at lower energies,
such as those with neutrons, muons and antiprotons, may give access to higher energy scales than
direct particle production or put fundamental symmetries to the test. They can be based in national
laboratories, with a moderate cost and smaller collaborations. Experiments in Europe with unique
reach should be supported, as well as participation in experiments in other regions of the world.

« With & mix of large, medium, and small projects, important
physics results will be produced continuously throughout the
twenty-year P5 timeframe. In our budget exercises, we main-
tained a small projects partfolio to preserve budgetary space

U S PEI' e D {jrt for a set of projects whose costs individually are not large
enough tocome under direct PS5 review but which are of great
importance to the field. This is in addition to the aforemen-
tioned small neutring experiments partfalio, which is intended
to be integrated into a coherent overall neutring program.

Consensus in the field is to pursue experiments with unique
capabilities and physics reach.



Summary

Hibeam can tackle a number of important open questions in
modern physics

Hibeam is the first step in a two stage set of experiments.

* Exceed nnbar sensitivity from ILL, new mirror neutron
searches + other experiments and R&D for complete
experimental program

International collaboration

Great opportunity for a very competitive suite of fundamental
physics experiments at the ESS which fits well within the
international pp program.



