


Working / writing meeting, 01/12/2017 Caterina Doglioni, Vava Gligorov, Johannes Albrecht Lund University

# Outline for today's meeting

- 1. Description of the network and its goals (this presentation)
  - 1. Participants
  - 2. Work package structure
  - 3. Training
  - 4. Secondments
- 2. Budget (thanks to Karin Langborger from Research Services)
- 3. Discussion and next steps

### Goals of SMARTHEP network

- International network of physicists and companies for real-time data analysis
- Main challenge/big question:
  - how to take decisions fast and efficiently, starting from large datasets
    - Physicists need to decide what data to permanently record starting from 40 million collision events/second, as soon as the collision event occurs
    - Companies need to take decisions fast based on large datasets in the context of e.g. traffic, self-driving cars, medical surgery simulation, financial transactions

### Tools:

- Machine learning to enable fast decisions
- Hardware (FPGA, GPU) and optimized software algorithms

### • Goal:

- train 15 PhD students on data science and real-time analysis
- contribute to specific research and industry goals

### Open questions on real-time

- How do we define **real-time**?
  - Broadly: "as soon as the data is taken, as fast as possible in order to influence subsequent decisions"
- Different fields have different timescales my guesses:
  - HEP: ns to ms (trigger decision)
  - Financial transactions: ?
  - Fleet control and mobile applications: < seconds
  - Medical simulation: < seconds
  - Traffic predictions: seconds

## Network participants

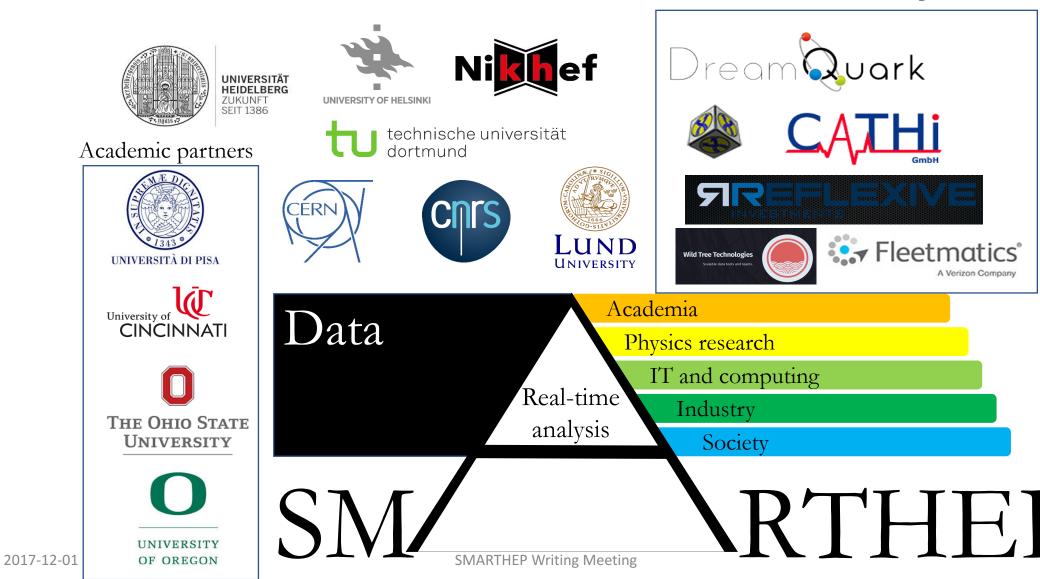
Physicists working at the Large Hadron Collider

- 9 European universities (5 ERC grantees) + 2 research institutes
- 3 North American universities

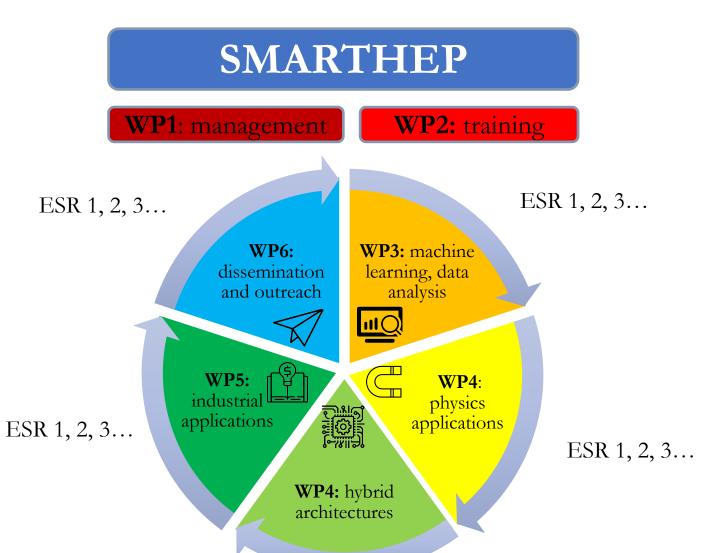
LHC experiments ALICE, ATLAS, CMS, and LHCb represented

Companies from Sweden, Germany, France, Italy, Switzerland

Traffic control and self-driving cars


Medical diagnosis

Finance and investment


Instrumentation

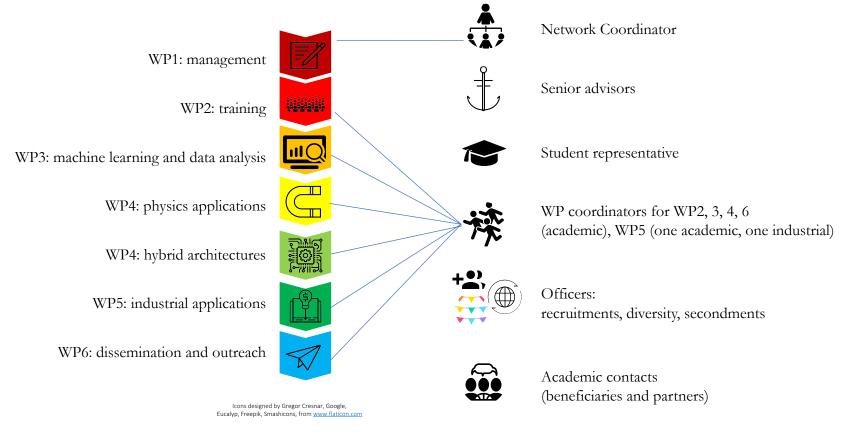
### Network participants

Industrial beneficiaries & partners



## Work Packages




Physics topics (sub-packages of WP4):

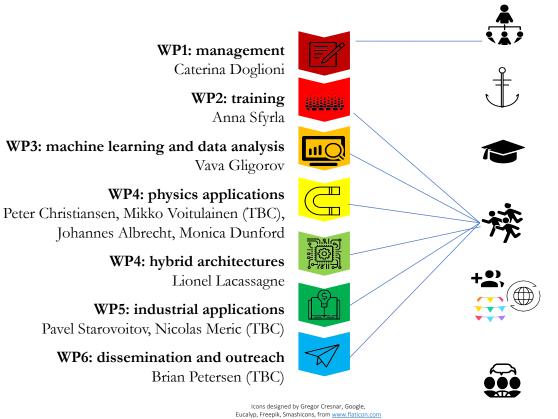
- Dark sectors and Higgs
- Lepton flavour violation
- Precision measurements

### Management structure

**SMARTHEP**Work Packages

### **SMARTHEP Supervisory Board**






Industry contacts (beneficiaries and partners)

### Management structure, with names

### **SMARTHEP**Work Packages

### SMARTHEP Supervisory Board



### **Network Coordinator**

Caterina Doglioni

#### Senior advisors

Peppe Iacobucci, Hans Schultz-Coulon, Torsten Akesson (TBC), Paula Eerola (TBC), LPNHE (?)

Student representative

WP coordinators for WP2, 3, 4, 6 (academic), WP5 (one academic, one industrial)

### Officers:

recruitment and secondments:
Oxana Smirnova or Bogdan Malaescu (TBC)
Diversity:
Olya Igonkina, Francesco Crescioli (TBC)

Academic contacts (beneficiaries and partners)

TBC = would you like to take this position, or another one?



Industry contacts (beneficiaries and partners)

# Early Stage Researchers (ESRs)

| ESR number     | Beneficiary                                                                   |
|----------------|-------------------------------------------------------------------------------|
| 1              | Helsinki CMS                                                                  |
| Topic/subtopic | Discovery of new physics in jets with RTA                                     |
| Physics        | Higgs, Dark Matter and dark sectors                                           |
| 2              | Helsinki CMS                                                                  |
| Topic/subtopic | Use ML and RTA for discovering new physics and measuring the SM               |
| Physics        | Higgs, Dark Matter and dark sectors, Precision measurements                   |
| 3              | UniGE ATLAS                                                                   |
| Topic/subtopic | Use ML-based tracking reconstruction in hardware triggers (GPU)               |
| Physics        | Higgs, Dark Matter and dark sectors                                           |
| 4              | CERN ATLAS                                                                    |
| Topic/subtopic | Increase efficiency of RTA in the ATLAS HLT using multithreading              |
| Physics        | Higgs, Dark Matter and dark sectors                                           |
| 5              | CERN LHCb                                                                     |
| Topic/subtopic | Speed up reconstruction algorithms for LHCb HLT to do RTA                     |
| Physics        | Lepton Flavour Violation                                                      |
| 6              | Dortmund LHCb                                                                 |
| Topic/subtopic | RTA MVA for identification of particle decays in leptons of different species |
| Physics        | Lepton Flavour Violation (in neutral meson decays)                            |
| 7              | Dortmund LHCb                                                                 |
| Topic/subtopic | Triggering on event properties                                                |
| Physics        | Lepton Flavour Violation (in neutral meson decays)                            |

# Early Stage Researchers (ESRs)

| 8               | LPNHE ATLAS                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------|
| Topic/subtopic  | Use FTK to reject pile-up for RTA                                                             |
| Physics         | Higgs, Dark Matter and dark sectors                                                           |
| 9               | LPNHE Computing                                                                               |
| Topic/ subtopic | RTA in hybrid architectures (make sure CPU, GPU, FPGA work together, next generation)         |
| Physics         | N/A (IT)                                                                                      |
| 10              | Dreamquark                                                                                    |
| Topic/subtopic  | Use ML (adversarial networks) for real-time discrimination on financial and insurance dataset |
| Physics         | Lepton Flavour Violation (in strange baryons)                                                 |
| 11              | NIKHEF ATLAS                                                                                  |
| Topic/subtopic  | Context-independent performance monitoring for real-time processes (ATLAS)                    |
| Physics         | Lepton Flavour Violation (in tau to 3mu)                                                      |
| 12              | NIKHEF LHCb                                                                                   |
| Topic/ subtopic | Context-independent performance monitoring for real-time processes (LHCb)                     |
| Physics         | Lepton Flavour Violation (in electron final state)                                            |
| 13              | Lund Alice                                                                                    |
| Topic/ subtopic | Upgrade of TPC for triggerless readout                                                        |
| Physics         | Precision measurements                                                                        |
| 14              | Lund ATLAS [beneficiary TBC]                                                                  |
| Topic/ subtopic | TBC                                                                                           |
| Physics         | Precision measurements (4th year)                                                             |
| 15              | Heidelberg ATLAS                                                                              |
| Topic/ subtopic | Pile-up noise reduction for the ATLAS calorimeter system                                      |
| Physics         | Higgs, Dark Matter and dark sectors                                                           |

# Training

Table 1.2.1: SMARTHEP doctoral programme

| Type of training                         | Number of credits          |
|------------------------------------------|----------------------------|
| Training through research                | 135                        |
| At host                                  | 75                         |
| Through secondment                       | $3\times20$ or $2\times30$ |
| Training through education PhD courses / | 45                         |
| Technical and Research Training          | (30)                       |
| Transferable Skills Training             | (15)                       |
| Total                                    | 180                        |

Question for beneficiaries: how to register ECTS credits from secondments/schools?

# Training events

Table 1.2.4: Main network-wide events, conferences and contribution of beneficiaries

| Ti       | aining Events & Conferences                      | ECTS       | Lead Institution         | Action Month |
|----------|--------------------------------------------------|------------|--------------------------|--------------|
| I.       | Kick-off meeting                                 | -          | Lund                     | 2            |
| 2.       | Introductory school                              | 3          | Nikhef                   | 8            |
| 3.       | Physics and machine learning school              | 3          | University of Geneva     | 16           |
| 4·<br>5· | Basic FPGA course<br>FPGA bootcamp               | I.5<br>I.5 | CERN<br>Pisa             | 25<br>26     |
| 6.       | Intermediate conference                          | -          | Lund                     | 28           |
| 7.       | CPU and hybrid architectures school              | 1.5        | USC                      | 27           |
| 8.       | Industry, career and transferrable skills school | 1.5        | University of Heidelberg | 36           |
| 9.       | Final conference and meeting                     | -          | CNRS                     | 42           |

## Secondments (1/2)

| ESR number     | Beneficiary                                                 | Industrial secondment (yellow=confirmed)                       | Mo. | Academic secondment                       | Mo. |
|----------------|-------------------------------------------------------------|----------------------------------------------------------------|-----|-------------------------------------------|-----|
| 1              | Helsinki CMS                                                | Ximantis                                                       | 4   | Lund ATLAS                                | 4   |
| Topic/subtopic | Discovery of new physics in jets with RTA                   | Apply RTA to traffic predictions                               |     | Improve precision of calibration for RTA  |     |
| Physics        | Higgs, Dark Matter and dark sectors                         |                                                                |     |                                           |     |
| 2              | Helsinki CMS                                                | Fleetmatic (Tensorflow on mobile)                              | 4   | CERN CMS                                  | 4   |
|                | Use ML and RTA for discovering new physics and measuring    |                                                                |     | Devise methods to apply object tagging to |     |
| Topic/subtopic | the SM                                                      | Use ML on mobile platform for RTA pattern recognition          |     | ESR1                                      |     |
| Physics        | Higgs, Dark Matter and dark sectors, Precision measurements |                                                                |     |                                           |     |
| 3              | UniGE ATLAS                                                 | ReflexiveInvestments                                           | 9   | N/A                                       | 0   |
|                | Use ML-based tracking reconstruction in hardware triggers   |                                                                |     |                                           |     |
| Topic/subtopic | (GPU)                                                       | TBC                                                            |     |                                           |     |
| Physics        | Higgs, Dark Matter and dark sectors                         |                                                                |     |                                           |     |
| 4              | CERN ATLAS                                                  | ReflexiveInvestments or IBM                                    | TBD | Heidelberg or LPNHE                       | TBD |
|                | Increase efficiency of RTA in the ATLAS HLT using           |                                                                |     |                                           |     |
| Topic/subtopic | multithreading                                              | TBC                                                            |     | ТВС                                       |     |
| Physics        | Higgs, Dark Matter and dark sectors                         |                                                                |     |                                           |     |
| 5              | CERN LHCb                                                   | IBM Openlab or IBM France?                                     | TBD | Dortmund                                  | TBD |
| Topic/subtopic | Speed up reconstruction algorithms for LHCb HLT to do RTA   | TBC                                                            |     | TBC                                       |     |
| Physics        | Lepton Flavour Violation                                    |                                                                |     |                                           |     |
| 6              | Dortmund LHCb                                               | Ximantis (reprogramming AI)                                    | 5   | NIKHEF LHCb or ATLAS                      | 4   |
|                | RTA MVA for identification of particle decays in leptons of |                                                                |     |                                           |     |
| Topic/subtopic | different species                                           | Apply ML to traffic predictions                                |     | ТВС                                       |     |
| Physics        | Lepton Flavour Violation (in neutral meson decays)          |                                                                |     |                                           |     |
| 7              | Dortmund LHCb                                               | Wild Tree                                                      | 3   | Lund                                      | 5   |
|                |                                                             | Monitor and optimise computing cluster (trigger farm) based on |     | Bring WildTreeTech ideas to LU computing  |     |
| Topic/subtopic | Triggering on event properties                              | global events                                                  |     | cluster                                   |     |
| Physics        | Lepton Flavour Violation (in neutral meson decays)          |                                                                |     |                                           |     |

https://docs.google.com/spreadsheets/d/1OHTNCu2\_pwvwYCh4ypwV2jaqesuCaog264nQygPDRNk/edit?usp=sharing for full list with proposed supervisors

## Secondments (2/2)

| 8              | LPNHE ATLAS                                                                                   | Fleetmatic (Apache Spark)                                | 5 | Pisa                                                                                                       | 4       |
|----------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------|---------|
| Topic/subtopic | Use FTK to reject pile-up for RTA                                                             | Parallel computing in the context of fleet tracking      |   | Apply techniques on creation of pattern banks                                                              |         |
| Physics        | Higgs, Dark Matter and dark sectors                                                           |                                                          |   |                                                                                                            |         |
| 9              | LPNHE Computing                                                                               | IBM France, NVIDIA                                       |   | CERN LHCb                                                                                                  |         |
|                | RTA in hybrid architectures (make sure CPU, GPU, FPGA work                                    | Design novel ML method for optimizing heterogeneous      |   | Apply to LHCb/ATLAS data processing                                                                        |         |
| Topic/subtopic | together, next generation)                                                                    | computing architectures                                  |   | architectures                                                                                              |         |
| Physics        | N/A (IT)                                                                                      |                                                          |   |                                                                                                            |         |
| 10             | Dreamquark                                                                                    | N/A                                                      |   | Santiago LHCb, CERN                                                                                        | 4+5     |
| Topic/subtopic | Use ML (adversarial networks) for real-time discrimination on financial and insurance dataset |                                                          |   | Apply same techniques in online discrimination of strange baryons, same topology but different final state |         |
| Physics        | Lepton Flavour Violation (in strange baryons)                                                 |                                                          |   |                                                                                                            |         |
| 11             | NIKHEF ATLAS                                                                                  | CATHI                                                    | 4 | CERN ATLAS/LHCb                                                                                            |         |
|                | Context-independent performance monitoring for real-time processes                            |                                                          |   | Application to new chains and algorithms                                                                   |         |
| Topic/subtopic | (ATLAS)                                                                                       | Real-time modelling of ultrasound devices for simulation |   | developed by ESR4, ESR5                                                                                    | $\perp$ |
| Physics        | Lepton Flavour Violation (in tau to 3mu)                                                      |                                                          |   |                                                                                                            |         |
| 12             | NIKHEF LHCb                                                                                   | IBM Openlab?                                             |   | LPNHE LHCb                                                                                                 |         |
|                | Context-independent performance monitoring for real-time processes                            |                                                          |   |                                                                                                            |         |
| Topic/subtopic | (LHCb)                                                                                        | TBC                                                      |   | TBC                                                                                                        |         |
| Physics        | Lepton Flavour Violation (in electron final state)                                            |                                                          |   |                                                                                                            |         |
| 13             | Lund Alice                                                                                    | N/A                                                      |   | CERN ALICE                                                                                                 | 6       |
| Topic/subtopic | Upgrade of TPC for triggerless readout                                                        |                                                          |   | Implementation of algorithms on hardware and software with local experts                                   |         |
| Physics        | Precision measurements                                                                        |                                                          |   |                                                                                                            |         |
| 14             | Lund ATLAS [beneficiary TBC]                                                                  | N/A                                                      |   | CERN/Oregon                                                                                                | 3       |
| Topic/subtopic | TBC                                                                                           |                                                          |   | Speed up topoclustering to enable full scan in HL-LHC                                                      |         |
| Physics        | Precision measurements (4th year)                                                             |                                                          |   |                                                                                                            |         |
| 15             | Heidelberg ATLAS                                                                              | Heidelberg Instruments                                   |   | LPNHE ATLAS                                                                                                |         |
|                |                                                                                               |                                                          |   | Apply to physics analysis using FTK and connec                                                             | t       |
| Topic/subtopic | Pile-up noise reduction for the ATLAS calorimeter system                                      | TBC                                                      |   | to ESR8                                                                                                    |         |

https://docs.google.com/spreadsheets/d/10HTNCu2 pwvwYCh4ypwV2jaqesuCaog264nQygPDRNk/edit?usp=sharing for full list with proposed supervisors