
GIT!!

DON’T	PANIC

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 1

BASIC	GIT	and	comparison	with	SVN	…
Checking	out
• SVN

• You	get	a	working	copy	of	the	specified	branch	(trunk,	or	another	branch)	on	your	machine
• GIT

• You	get	a	standalone	repository	of	the	specified	branch	(or	default	master),	in	addition	to	a	
working	copy	where	you	do	your	work.	You	also	get	a	staging	area	(index).	In	total	three	trees	– we	
will	get	back	to	it

Committing
• SVN

• You	commit	your	changes	to	the	central	repository	online
• You	can	not	edit	or	improve	your	commit	messages

• GIT
• You	add	files	you	want	to	commit,	then	commit	to	your	local	repository	(can	be	done	in	one	step	if	
you	want)

• To	share	your	work,	you	push	the	HEAD	of	your	local	repo	to	the	remote	repo
• You	can	work	with	GIT	fully	(committing,	checking	history	etc	etc)	without	contact	with	the	remote	
repo,	but	to	update	your	repo	with	work	others	have	done,	or	make	others	aware	of	the	work	you	
have	done,	you	must	contact	the	remote	repo	(pull,	push)

• You	can	edit	your	commit	messages,	and	also	squash	commits	together	– many	small	commits	can	
become	one	big	clearer	one

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 2

Branches

• SVN
• Each	branch	is	a	full	standalone	directory	of	files	belonging	to	that	branch
• Checking	out	several	branches	means	you	have	separate	directories	for	each	branch.	You	have	a	full	working	copy	of	

each	branch.

• GIT	
• Each	branch	is	just	a	pointer	to	a	specific	state	of	your	file	collection	(pointer	to	a	snapshot	of	your	repo)
• à branches	are	very	lightweight	and	used	much	more	flexibly	and	often	than	in	svn

Merging

• SVN	
• Merging involves pushing to	the remote repo,	fixing mistakes makes	the history very messy
• Each commit requires a	separate	merge.	

• GIT
• You can sort	out all	mistakes,	conflicts etc on your own fork	and	clear up	history before you merge into the upstream

repo
• Merge is	not	performed until all	conflicts are actually solved
• You can squash	your commits and	merge a	logical unit	rather than a	series	of small related commits

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 3

… BASIC	GIT	and	comparison	with	SVN

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 4

The	concepts

• A fork
• Basically	a	full	standalone	copy	of	a	chosen	repository	in	a	different	namespace
(usually	your	namespace)

• A	fork	will	also	allow	you	to	share	your	work	with	others,	and	lives	on	the	
Coderefinery GitLab instance

• It	allows	you	to	do	work	without	“muddling”	up	the	central	repo
• A local	copy

• git clone creates	a	local	copy	of	the	fork	(or	any	other	repo)	for	you	to	work	on
• Working	directory:	holds	your	actual	files	for	you	to	work	on
• Index:	staging	area	for	changes	you	want	to	commit

• You	can	select	what	changes	you	want	to	commit,	or	commit	everything	that	has	
changed

• HEAD:	points	to	your	last	commit	of	the	branch	you	are	currently	on

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 5

Your	local	repository	- the	three	“trees”

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 6

My	proposal	of	our	branch	model
3	branches	on	the	remote	repo
• master (kind	of	trunk)

• Releases	will	be	tags	on	master
• minor	

• for	development	of	features	aimed	for	
minor	release

• You	create	a	development	branch	off	the	
minor	branch

• You	merge	into	minor	branch	once	done
• Currently	made	off	of	5.4

• major	
• for	development	aimed	for	major	release
• You	create	a	development	branch	off	the	
major	branch

• You	merge	into	major	branch	once	done
• Currently	made	off	of	6.0

Bugfixes
• You	create	a	development	branch	off	the	
major	branch

• You	merge	into	master	branch	once	done
• Bugfixes are	automatically	(hopefully)	
merged	into	minor	and	major	branches

At	time	of	release:	
• if	minor:	minor	branch	will	be	merged	
into	master
• Tag	master	for	release

• If	major:	major	branch	will	be	merged	
into	master
• Tag	master	for	release

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 7

Training	repo

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 8

https://source.coderefinery.org/no
rdugrid/arc-slim

I	have	added	some	of	you	as	
members	with	role	“developer”

https://docs.gitlab.com/ee/user/pe
rmissions.html

Overview	of	workflow
Forking,	branching,	merging
• Fork	the	central	repo.	Central	repo	will	be	called	upstream.
• Create	branch	from	minor	(major)	branch.	
• Do	some	work.
• Keep	your	fork	branch	up	to	date	with	upstream	

• Drag	down	changes	from	the	upstream	repo	(all	branches)
• Merge	or	rebase	onto	your	fork.	Branch	by	branch.	
• Bring	you	feature	branch	up	to	date	with	the	now	updated	parent	branch	by	merging.	

• Before	pushing	the	commits	to	your	remote	repo	please	consider	if	you	can	squash	your	commits.	
• Push	to	the	remote	(fork)	repo	with	some	regularity.	
• (This	step	might	instead	be	just	done	directly	onto	the	upstream	branch)	Once	you	are	completely	ready	
with	the	work,	or	ready	with	a	sufficiently	standalone	part:	merge	the	development	branch	into	your	parent	
branch	(minor	or	major	branch).
• Make	sure	you	have	syncrhonized your	minor/major	branch	with	the	upstream	branches
• Resolve	any	conclicts that	may	occur
• Delete	your	development	branch,	both	local	copy	and	remotely	on	the	fork

• Now	you	are	ready	to	create	a	merge	request	of	your	forks	minor(major)	branch	to	the	upstream	minor	
(major)	branch.

• Repeat	procedure	if	you	have	a	new	feature,	or	some	new	development	on	the	old	feature.	
Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 9

Merge	conflicts

• Big	improvement	in	working	model	is	that	each	developer	will	be	
responsible	for	keeping	his	development	branch	up	to	date	with	the	parent	
branch
• After	all,	the	developer	is	the	best	one	to	solve	conflicts	related	to	his	code

• At	the	time	of	a	merge	request,	it	means	that	conflicts	are	already	solved	
on	the	development	branch	
• Surely	there	will	be	some	exceptions,	but	anyway	a	huge	improvement

• Be	aware	that	once	you	have	opened	a	merge	request,	all	commits	that	
come	after	this	will	be	included	in	the	merge.
• Important	to	not	start	working	on	some	other	stuff	on	the	same	branch,	but	just	
perform	commits	to	solve	merge	conflicts	

• We	should	look	at	a	development	branch	containing	a	smaller	unit	of	development,	
and	delete	the	branch	after	this	is	done.	Then	start	a	new	one.

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 10

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 11

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 12

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 13

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 14

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 15

Merge	request

• Select	template	for	writing	merge	request
• Help-text	here	to	be	sorted	out

• Short	description	should	be	informative	and	in	a	state	that	can	be	
used	for	release	notes
• Detailed	description	should	specifically	answer	what	has	changed,	
why,	and	what	implications	this	has	for	end	user.	
• We	will	probably	use	tags
• Proposal:	This	will	create	a	merge	commit	which	will	take	the	role	of	
the	changelog.	
• Will	it?	Can	it?	Is	it	ok?	

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 16

Merge	request
• Fork

• Create	new	branch	for	the	work	on	my	fork,	do	work,	add	(stage)	changes,	commit	to	branch.

• Push	to	remote	fork	repo
• Git replies	by	suggesting	that	you	do	a	merge	request,	and	how	to	do	it,	with	url provided

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 17

To	fork	or	not	to	fork
We	could	work	without	forking.	Each	developer	then	just	makes	a	
development	branch	right	off	of	the	central	git repo.	

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 18

Pros	with	forks
• Working	with	forks	allows	each	
developer	to	make	as	much	mess	as	
he	wants	without	cluttering	the	
remote	official	git repo

Cons	with	forks
• Well,	the	only	con	I	can	think	of	is	
that	the	public	will	not	see	all	that	is	
going	on,	but	that	is	not	necessarily	a	
con!

GitLab functionality	…
• Continuous	integration

• Currently	for	test	using	University	cloud	
• Builds	the	branch	in	a	docker container	running	

on	a	predefined	machine,	git clones	the	repo	on	
that	machine,	and	performs	build,	live	build	on	
gitlab,	report	on	success/fail

• Can	be	set	up	for	all	branches,	or	some	
branches
• Depends	on	space	on	the	build	machine	used

• Marek	has	set	up	CI	and	deployment	using	
Jenkins	from	our	svn
• http://autodeploy.grid.upjs.sk:8080/
• Will	integrate	this	into	our	git repo,	not	started	

sorting	out	details	here	yet
• He	has	also	set	up	rpm	production.	Remains	to	

set	up	for	all	supported	platforms

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 19

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 20

… GitLab
functionality ...

Issues
• I	expect	we	continue	using	
bugzilla for	reporting	
bugs/features?

• Issues	in	GitLab can	be	used	
by	developers	only.	
• Must	decide	how	actively	we	

use	issues.	
• One	issue	per	merge?	Point	

to	bugzilla record?	
• Use	issue	to	discuss	and	

request	feature?

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 21

...	GitLab functionality
Many	possibilities	available

• Milestones
• Organizes	issues	and	merge	requests	into	a	cohesive	group.	
• Can	be	used	keeping	track	of	an	upcoming	software	version.	

• Work	flow	boards
• Can	be	used	to	track	issues

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 22

• Release	notes
• Plan	to	set	up	

automatic	draft	of	
release	notes	based	on	
commit	
messages/merge	
commits/issues

How	to	do	releases,	and	how	to	use	various	
GitLab functionality
• How	can	current	release	procedure	be	simplified/automated/improved	?

• Release	notes	should	be	pushed	to	web	automatically	once	the	rpms	are	available
• Move	release	notes	from	doc	repo	to	arc1	docs

• Will	at	last	have	release	note	tag	same	as	release
• Other	suggestions?	

• Release	notes	on	GitLab?
• Documentation	on	GitLab?
• Webhooks – read-the-docs?
• Webhooks – bugzilla?	

Content	of	release	notes:
• Each	merge	request	should	be	linked	to	an	issue?	That	means	one	must	create	an	issue	in	GitLab
that	e.g.	could	link	to	a	bugzilla bug/feature	request.	
• Not	clear	to	me	how	it	will	look	if	we	issues,	or	just	merge	request	comments	for	release	notes.	Needs	some	

testing	once	set	up.	

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 23

Automatic	merging

• Want	to	set	up	automatic	merging	of	bugfixes
• When	bugfixes are	merged	onto	master	branch,	port	(merge)	these	to	minor	
and	major	branch
• Requires	use	of	tags	and	possibly	use	of	issues	for	merging

• To	be	sorted	out
• https://www.atlassian.com/blog/git/git-automatic-merges-with-
server-side-hooks-for-the-win

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 24

Useful	things

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 25

Git log	with	graph	option

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 26

Useful	tip:	to	always	see	which	branch	you	
are	on:
In .bashrc do:

parse_git_branch() {

git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ (git:\1)/'

}

export PS1="\h@\W\$(parse_git_branch)\[\033[00m\]$

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 27

Committed,	but	want	to	change	the	commit	
message?
git commit	–amend
• If	you	just	committed,	and	have	not	made	any	changes,	this	will	just	
open	the	editor	with	your	last	commit	message,	and	you	can	edit	it
• If	you	did	make	changes,	add	those,	and	with	git commit	–ammend,	
the	changes	will	be	committed,	together	with	the	(edited)	commit	
message
• The	second	commit	replaces	the	first	one,	so	you	will	only	have	a	
single	commit

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 28

Getting	help

• https://git-scm.com/book/en/v2/Getting-Started-About-Version-
Control
• Chap	1-3	are	very	useful

• https://learngitbranching.js.org/
• https://try.github.io/levels/1/challenges/1

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 29

git clean -n Shows which files would be removed from working directory. Use
the -f flag in place of the -n flag to execute the clean.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

git push
<remote> <branch>

git reset <file> Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

git pull <remote> Fetch the specified remote’s copy of current branch and immediately
merge it into the local copy.

git revert
<commit>

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

git fetch
<remote> <branch>

Fetches a specific <branch>, from the repo. Leave off <branch> to
fetch all remote refs.

git remote add
<name> <url>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.Undoing Changes

git diff Show unstaged changes between your index and working directory. Remote Repositories

git commit -m
"<message>"

Commit the staged snapshot, but instead of launching a text editor,
use <message> as the commit message.

git status List which files are staged, unstaged, and untracked.

git log Display the entire commit history using the default format.
For customization see additional options.

git branch List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

git checkout -b
<branch>

Create and check out a new branch named <branch>. Drop the -b
flag to checkout an existing branch.

git merge <branch> Merge <branch> into the current branch.

Git Branchesgit add
<directory>

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

git clone <repo>

git config
user.name <name>

Define author name to be used for all commits in current repo. Devs
commonly use --global flag to set config options for current user.

git rebase <base>

git reflog Show a log of changes to the local repository’s HEAD. Add
--relative-date flag to show date info or --all to show all refs.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

git init
<directory>

Create empty Git repo in specified directory. Run with no arguments
to initialize the current directory as a git repository.

git commit
--amend

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
a branch name, a tag, or a relative reference to HEAD.

Git Basics Rewriting Git History

Git Cheat Sheet

Visit atlassian.com/git for more information, training, and tutorials
Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 30

git config --global
user.name <name>

Define the author name to be used for all commits by the current user.

git config

git config --global
user.email <email>

Define the author email to be used for all commits by the current user.

git config --global
alias. <alias-name>
<git-command>

Create shortcut for a Git command. E.g. alias.glog log --graph
--oneline will set git glog equivalent to git log --graph --oneline.

git config --system
core.editor <editor>

Set text editor used by commands for all users on the machine. <editor>
arg should be the command that launches the desired editor (e.g., vi).

Open the global configuration file in a text editor for manual editing.git config
--global --edit

Limit number of commits by <limit>. E.g. git log -5 will limit to 5
commits.

git log -<limit>

Include which files were altered and the relative number of lines
that were added or deleted from each of them.

git log --oneline
Display the full diff of each commit.

git log --stat

Search for commits by a particular author.

git log -p

git log --author=
”<pattern>”

Show commits that occur between <since> and <until>. Args can be a
commit ID, branch name, HEAD, or any other kind of revision reference.

git log
--grep=”<pattern>”

git log
<since>..<until>

Only display commits that have the specified file.git log -- <file>

--graph flag draws a text based graph of commits on left side of commit
msgs. --decorate adds names of branches or tags of commits shown.

git log --graph
--decorate

git diff HEAD Show difference between working directory and last commit.

git diff --cached Show difference between staged changes and last commit

git reset Reset staging area to match most recent commit, but leave the
working directory unchanged.

git reset --hard Reset staging area and working directory to match most recent
commit and overwrites all changes in the working directory.

git reset <commit> Move the current branch tip backward to <commit>, reset the
staging area to match, but leave the working directory alone.

git reset --hard
<commit>

Same as previous, but resets both the staging area & working directory to
match. Deletes uncommitted changes, and all commits after <commit>.

git reset

git rebase

git rebase -i
<base>

Interactively rebase current branch onto <base>. Launches editor to enter
commands for how each commit will be transferred to the new base.

git pull

git pull --rebase
<remote>

Fetch the remote’s copy of current branch and rebases it into the local
copy. Uses git rebase instead of merge to integrate the branches.

git push

git push <remote>
--force

Forces the git push even if it results in a non-fast-forward merge. Do not use
the --force flag unless you’re absolutely sure you know what you’re doing.

git push <remote>
--all

Push all of your local branches to the specified remote.

git push <remote>
--tags

Tags aren’t automatically pushed when you push a branch or use the
--all flag. The --tags flag sends all of your local tags to the remote repo.

Additional Options +

Visit atlassian.com/git for more information, training, and tutorials

git diff

git log

Condense each commit to a single line.

Search for commits with a commit message that matches <pattern>.

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 31

Hands-on	training

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 32

Plan	hands	on

• We	practice	the	workflow
• I	will	do	some	bugfix merges	into	the	master	branch
• You	will	have	to	keep	your	feature	branch	up	to	date	with	the	
upstream	repo
• When	ready	you	push	to	your	remote	fork	branch,	then	do	a	merge	
request
• We	try	various	variations	of	this
• Using	tags	and	issues	for	each	development	for	instance

Nov	2017 Maiken	Pedersen	- ARC	F2F	Ljubljana 33

