GIT!!

DON’T PANIC

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana

BASIC GIT and comparison with SVN ...

Checking out

* SVN
* You get a working copy of the specified branch (trunk, or another branch) on your machine
e GIT

* You get a standalone repository of the specified branch (or default master), in addition to a

working copy where you do your work. You also get a staging area (index). In total three trees — we
will get back to it

Committing
* SVN

* You commit your changes to the central repository online
* You can not edit or improve your commit messages

* GIT

* You add fi)les you want to commit, then commit to your local repository (can be done in one step if
you want

* To share your work, you push the HEAD of your local repo to the remote repo

* You can work with GIT fully (committing, checking history etc etc) without contact with the remote

repo, but to update your repo with work others have done, or make others aware of the work you
have done, you must contact the remote repo (pull, push)

* You can edit your commit messages, and also squash commits together — many small commits can
become one big clearer one

BASIC GIT and comparison with SVN

Branches

* SVN

* GIT

Each branch is a full standalone directory of files belonging to that branch

Checking out several branches means you have separate directories for each branch. You have a full working copy of
each branch.

Each branch is just a pointer to a specific state of your file collection (pointer to a snapshot of your repo)
- branches are very lightweight and used much more flexibly and often than in svn

Merging

* SVN

Merging involves pushing to the remote repo, fixing mistakes makes the history very messy
Each commit requires a separate merge.

You can sort out all mistakes, conflicts etc on your own fork and clear up history before you merge into the upstream
repo

Merge is not performed until all conflicts are actually solved
You can squash your commits and merge a logical unit rather than a series of small related commits

¥ournova

GIT For SUBVERSION USERS

pesentedty TOWER — the best Gif clienf for Mac and Windows

Creating a New Repository

With gitinit, an empty repository is created in the current folder of
your local hard drive. The gitadd command then marks the current
contents of your project directory for the next (and in this case:
first) commit.

Committing Local Changes

Inspecting your current local changes is very similar in both systems.

EEEE

$ svn status
$ svn diff | less

$ svnadmin create /path/to/repo
$ svn import /path/to/local/project http://
example.com/svn/ trunk -m “Initial import"

$ git init
$ git add .
$ git commit -m "Initial commit"

Cloning a Remote Repository

Cetting a copy of the project from a remote server seems almost
identical. However, after performing gitclone, you have a full-
blown local repository on your machine, not just a working copy.

$ svn checkout
svn+ssh://svn@example.com/svn/trunk

$ git clone
ssh://git@example.com/path/to/git-repo.git

Inspecting History

To inspect historic commits, both systems use the log command.
Keep in mind, however, that gitlog doesn't need to ask the remote
server for data: your project’s history is already at hand, saved in
your local repository.

$ svn log | less

$ git log

$ git status GIT

$ git diff

In case you've created new files or deleted old ones, you should
tell Git with the gitadd and gitrm commands. You'll be pleased to
hear that it's safe to inform Git after deleting or moving a file or
even a folder. This means you should feel free to delete or move
even complete directory structures in your favorite editor, IDE,
or file browser and later confirm the action with the add and rm
commands.

UBVERSION
$ svn add <file> !

$ svn rm <file>

$ git add <file> GIT

$ git rm <file>

In its simplest form, committing can feel just like in Subversion.
With the -a option, you tell Git to simply add all current local
changes to the commit.

) UBVERSION
$ svn commit -m "message”

$ git commit -a -m “message” =

Although short-circuiting Git's staging area like this can make
sense, you'll quickly begin to love it once you understand how
valuable it is:

You can add selected files to the staging area and even limit this to
certain parts (or even lines) of a file by specifying the -p option. This
allows you to craft your commits in a very granular way and only
add changes that belong to the same topic in a single commit.

$ git add <filel> <file2> GIT

$ git add -p <file3>

Yournova

Branching & Tagging

In contrast to Subversion, Git doesn't use directories to manage
branches. Instead, it uses a more powerful and lightweight approach.
As you might have already noticed, the gitstatus command also
informs you about which branchyou are currently working on. And
in Git, you are always working on a branch!

$ svn copy http://fexample.com/svn/trunk/ m
http://fexample.com/svn/branches/<new-branch>

$ git branch <new-branch> GIT

To switch to a different branch and make it active (then also
referred to as the HEAD branch), the gitcheckout command is
used. Because switching can take some time in Subversion, it's
not unusual to instead have multiple working copies on your disk.
In Git, this would be extremely uncommon: since operations are
very fast, you only keep a single local repository on your disk.

UBVERSION
$ svn switch 0
http://example.com/svn/branches/<branch>

$ git checkout <branch> GIT

Listing all available local branches just requires the gitbranch
command without further arguments.

$ svn list http://fexample.com/svn/branches/ m

$ git branch GIT

Creating tags is just as quick & cheap as creating branches.

$ svn copy http://fexample.com/svn/trunk/ m
http://example.com/svn/tags/<tag-name>

$ git tag -a <tag-name> GIT

Merging Changes

Like in newer versions of SVN, you only need to provide the branch
you want to integrate to the gitmerge command.

GIT FOR SUBVERSION USERS E

Everything else is taken care of for you: you can merge two
branches as often as you like, don't have to specify any revisions
and can expect the operation to be blazingly fast if you're merging
two local branches.

If a merge conflict should occur, Git will already update the rest
of the working copy to the new state. After resolving a conflicted
file, you can mark it using the gitadd command.

$ svn resolved <file>

$ git add <file>

Sharing & Collaborating

To download & integrate new changes from a remote server, you
use the gitpull command.

$ svn update

$ git pull

If you only want to download & inspect remote changes (before
integrating them), you can use gitfetch. Later, you can integrate
the downloaded changes via gitmerge.

$ git fetch GIT

In Subversion, data is automatically uploaded to the central server
when committing it. In Git, however, this is a separate step. This
means you can decide for yourself if and when you want to share
your work. Once you're ready, the gitpush command will upload
the changes from your currently active branch to the remote
branch you specify.

$ git push <remote> <branch> GIT

Your teammates, too, will publish theirwork like this on a remote
(with the gitpush command). If you want to start working on such
a branch, you need to create your own local copy of it. You can
use the gitcheckout command with the -track option to do just
that: create a local version of the specified remote branch. You can
later share the additional commits you've made at any time with
the gitpush command, again.

UBVERSION
$ svn merge -r REV1:REV2

http://fexample.com/svn/branches/<other-branch>

$ svn merge
http://fexample.com/svn/branches/<other-branch>

(or in newer SVN versions)

$ git merge <other-branch> GIT

$ svn switch
http://example.com/svn/branches/<branch>

$ git checkout --track <remote>/<branch> GIT

Nov 2017
30-day free trial available at
www.git-tower.com

oGk Pedersen - ARC.E2E dbljana
www.git-tower.com

TOWER

the best Git client for Mac and Windows the best Git client for Mac and Windows

The concepts

e A fork

 Basically a full standalone copy of a chosen repository in a different namespace
(usually your namespace)

* A fork will also allow you to share your work with others, and lives on the
Coderefinery GitLab instance

* It allows you to do work without “muddling” up the central repo

* Alocal copy

 git clone creates a local copy of the fork (or any other repo) for you to work on
* Working directory: holds your actual files for you to work on

* Index: staging area for changes you want to commit

* You can select what changes you want to commit, or commit everything that has
changed

 HEAD: points to your last commit of the branch you are currently on

Your local repository - the three “trees”

Working .git directory
Directory (Repository)

Checkout the project

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana

My proposal of our branch model

3 branches on the remote repo

* master (kind of trunk)
* Releases will be tags on master

° minor

* for development of features aimed for
minor release

* You create a development branch off the
minor branch

* You merge into minor branch once done
e Currently made off of 5.4

°* major
e for development aimed for major release

* You create a development branch off the
major branch

* You merge into major branch once done
e Currently made off of 6.0

Bugfixes
* You create a development branch off the
major branch
* You merge into master branch once done

* Bugfixes are automatically (hoBefuIIy)
merged into minor and major branches

At time of release:

* if minor: minor branch will be merged
into master

* Tag master for release

 If major: major branch will be merged
into master

* Tag master for release

Training repo

https://source.coderefinery.org/no
rdugrid/arc-slim

| have added some of you as
members with role “developer”

https://docs.gitlab.com/ee/user/pe
rmissions.html

Nov 2017

Files (167.7 MB) Commits (14,559) Branches (3)

master arc-slim /

Switch branch/tag

Tags (0) Readme Changelog LICENSE CIconfiguration

Search branches and tags

Branches
major
v master

minor
@8 include
B m4
B nsis
B po
8 python
8 selinux
B src
B swig
[® .gitignore

@ .gitlab-ci.yml

Maiken Pedersen - ARC F2F Ljubljana

2quest template.

ly

Make sure directory exists

Remove libarcdbxml and associated header f...

Remove arcacl client utility

Adding back OpenSSL-related translations, a...

Fix pylint test compaining about old python2 ...

Integrate SELinux egiis module into packaging
fix return value to correct type

Removing support for java.

Added gitlab merge request template.

Update .gitlab-ci.yml

Add Contribution guide

Q Findfile & ~

) 16364177 I

Last Update

about 23 hours ago
2 months ago

4 months ago

4 years ago

2 years ago

4 months ago

7 months ago

6 years ago

5 days ago

4 months ago
about 23 hours ago

a day ago

Overview of workflow
Forking, branching, merging

* Fork the central repo. Central repo will be called upstream.
e Create branch from minor (major) branch.
* Do some work.

* Keep your fork branch up to date with upstream
* Drag down changes from the upstream repo (all branches)
* Merge or rebase onto your fork. Branch by branch.
* Bring you feature branch up to date with the now updated parent branch by merging.

* Before pushing the commits to your remote repo please consider if you can squash your commits.
* Push to the remote (fork) repo with some regularity.

* (This step might instead be just done directly onto the upstream branch) Once you are completely ready
with the work, or ready with a sufficiently standalone part: merge the development branch into your parent
branch (minor or major branch).

* Make sure you have syncrhonized your minor/major branch with the upstream branches
* Resolve any conclicts that may occur
* Delete your development branch, both local copy and remotely on the fork

* Now you are ready to create a merge request of your forks minor(major) branch to the upstream minor
(major) branch.

* Repeat procedure if you have a new feature, or some new development on the old feature.

Merge conflicts

* Big improvement in working model is that each developer will be
rbespOESIbIe for keeping his development branch up to date with the parent
ranc

» After all, the developer is the best one to solve conflicts related to his code

e At the time of a merge request, it means that conflicts are already solved
on the development branch

* Surely there will be some exceptions, but anyway a huge improvement

* Be aware that once you have opened a merge request, all commits that
come after this will be included in the merge.

* Important to not start working on some other stuff on the same branch, but just
perform commits to solve merge conflicts

* We should look at a development branch containing a smaller unit of development,
and delete the branch after this is done. Then start a new one.

Fork tne repo using the GitLab web interface.

Create your local repo of the fork and cd into it:

git clone git@source.coderefinery.org:maikenp/arc.git arc-fork
cd arc-fork

Add references to your fork repo, and the upstream repe
git remote add origin git@source.coderefinery.org:maikenp/arc.git
git remote add upstream git@source.coderefinery.org:nordugrid/arc.git

Nov 2017

Maiken Pedersen - ARC F2F Ljubljana

11

Fork the repo using the GitLab web interface.

Create your local repo of the fork and cd into it:
git clone git@source.coderefinery.org:maikenp/arc.git arc-fork
cd arc-fork

Add references to your fork repo, and the upstream repc
git remote add origin git@source.coderefinery.org:maikenp/arc.git
git remote add upstream git@source.coderefinery.org:nordugrid/arc.git

All of the branches from the remote repo will not be visible to you. You set them up by demand. In this example you will need the minor branch
git checkout -b minor —-track origin/minor #create local branch minor which is a copy of the origin/minor branch, and switch into that branch

Create a new development branch based on the existing minor branch and call it something useful, e.g. restplugin. This command will at the same time check you out of any other branch
you were in, and check you into your new branch restplugin:
git checkout -b restplugin minor

Do your work.

Nov 2017

Maiken Pedersen - ARC F2F Ljubljana

12

Fork the repo using the GitLab web interface.

Create your local repo of the fork and cd into it:
git clone git@source.coderefinery.org:maikenp/arc.git arc-fork
cd arc-fork

Add references to your fork repo, and the upstream repc
git remote add origin git@source.coderefinery.org:maikenp/arc.git
git remote add upstream git@source.coderefinery.org:nordugrid/arc.git

All of the branches from the remote repo will not be visible to you. You set them up by demand. In this example you will need the minor branch
git checkout -b minor —-track origin/minor #create local branch minor which is a copy of the origin/minor branch, and switch into that branch

Create a new development branch based on the existing minor branch and call it something useful, e.g. restplugin. This command will at the same time check you out of any other branch
you were in, and check you into your new branch restplugin:
git checkout -b restplugin minor

Do your work.

_

Add the files you worked on, commit them to your local branch, squash, then push them to the fork repo. Note the different git add options: git add -—all : stages All files, in addition to
the removing files, git add . :stages new and medified, but does not delete, git add -u :stages modified and deleted, but not new, git add myfile.cpp : will only add that file).

git add . #stage the changes to your index

git commit " #make a nice commit message, and commit the changes to your local branch
Repeat.

Let's say you had 10 commits related to the same change.

git reset --soft HEAD~1@ #go back 10 commits

git commit -m "New message for the combined commit" #apply all your changes all in one here
git push -u origin restplugin #push the updates to the remote repo

Nov 2017

Maiken Pedersen - ARC F2F Ljubljana

13

Fork the repo using the GitLab web interface.

Create your local repo of the fork and cd into it:
git clone git@source.coderefinery.org:maikenp/arc.git arc-fork
cd arc-fork

Add references to your fork repo, and the upstream repc
git remote add origin git@source.coderefinery.org:maikenp/arc.git
git remote add upstream git@source.coderefinery.org:nordugrid/arc.git

All of the branches from the remote repo will not be visible to you. You set them up by demand. In this example you will need the minor branch
git checkout -b minor —-track origin/minor #create local branch minor which is a copy of the origin/minor branch, and switch into that branch

Create a new development branch based on the existing minor branch and call it something useful, e.g. restplugin. This command will at the same time check you out of any other branch
you were in, and check you into your new branch restplugin:

git

checkout -b restplugin minor

Do your work.

Add the files you worked on, commit them to your local branch, squash, then push them to the fork repo. Note the different git add opticns: git add -—all : stages All files, in addition to

the removing files, git add . :stages new and medified, but does not delete, git add -u :stages modified and deleted, but not new, git add myfile.cpp : will only add that file).

git add . #stage the changes to your index
git commit " #make a nice commit message, and commit the changes to your local branch
Repeat.

Let's say you had 10 commits related to the same change.

git
git
git

reset --soft HEAD~1@ #go back 10 commits
commit -m “"New message for the combined commit" #apply all your changes all in one here
push -u origin restplugin #push the updates to the remote repo

\

Make sure to frequently update your fork and development branch to take into account important fixes upstream. Assume some bufixes have been merged to the parent minor branch you
are working from.

git
git
git
git
git

fetch upstream #update your local copy of the upstream repo

checkout minor #move into your forks minor branch working copy

merge upstream/minor minor #merge the upstream changes in minor branch into your forks minor branch working copy
commit -a #add changed files and commit

checkout restplugin

#switch to the restplugin branch working copy git merge minor restplugin #merge the updates from the parent minor branch into your restplugin development branch

Nov 2017

Maiken Pedersen - ARC F2F Ljubljana

14

Fork the repo using the GitLab web interface.

Create your local repo of the fork and cd into it:
git clone git@source.coderefinery.org:maikenp/arc.git arc-fork
cd arc-fork

Add references to your fork repo, and the upstream repe
git remote add origin git@source.coderefinery.org:maikenp/arc.git
git remote add upstream git@source.coderefinery.org:nordugrid/arc.git

All of the branches from the remote repo will not be visible to you. You set them up by demand. In this example you will need the minor branch
git checkout -b minor —-track origin/minor #create local branch minor which is a copy of the origin/minor branch, and switch into that branch

Create a new development branch based on the existing minor branch and call it something useful, e.g. restplugin. This command will at the same time check you out of any other branch
you were in, and check you into your new branch restplugin:
git checkout -b restplugin minor

Do your work.

Add the files you worked on, commit them to your local branch, squash, then push them to the fork repo. Note the different git add options: git add -—all : stages All files, in addition to
the removing files, git add . :stages new and medified, but does not delete, git add -u :stages modified and deleted, but not new, git add myfile.cpp : will only add that file).

git add . #stage the changes to your index

git commit " #make a nice commit message, and commit the changes to your local branch
Repeat.

Let's say you had 10 commits related to the same change.

git reset --soft HEAD~1@ #go back 10 commits

git commit -m “"New message for the combined commit" #apply all your changes all in one here
git push -u origin restplugin #push the updates to the remote repo

Make sure to frequently update your fork and development branch to take into account important fixes upstream. Assume some bufixes have been merged to the parent minor branch you
are working from.

git fetch upstream #update your local copy of the upstream repc

git checkout minor #move into your forks minor branch working copy

git merge upstream/minor minor #merge the upstream changes in minor branch into your forks minor branch working copy

git commit -a #add changed files and commit

git checkout restplugin

#switch to the restplugin branch working copy git merge minor restplugin #merge the updates from the parent minor branch into your restplugin development branch

-

Nov 2017

_

Continue working, adding, committing. Keep your development and release branches up to date as above.

Once you are ready with a logical part of the work, or all the work, create a merge request to merge your branch into the upstream repo. Go to the upstream repos web interface and create a
merge reguest of the restplugin branch onto the miner branch.

Clean up your development branch in your fork repo, both locally and on the remote fork repo. . .
git branch -d restplugin #remove local branch Maiken Pedersen - ARC F2F Ljubljana

git push origin —--delete restplugin #remove remote branch

15

Merge request

 Select template for writing merge request
* Help-text here to be sorted out

e Short description should be informative and in a state that can be
used for release notes

* Detailed description should specifically answer what has changed,
why, and what implications this has for end user.

* We will probably use tags

* Proposal: This will create a merge commit which will take the role of
the changelog.

e Will it? Canit? Is it ok?

Merge request

* Fork

* Create new branch for the work on my fork, do work, add (stage) changes, commit to branch.

* Push to remote fork repo
* Gitreplies by suggesting that you do a merge request, and how to do it, with url provided

= L[UIT[Maiken [arc-slim v This project Search
Project Repository Issues © Merge Requests 0 Pipelines Wiki Snippets Settings

Files Commits Branches Tags Contributors Graph Compare Charts

+! There will be maintenance on Thursday November 23rd between 10-12 AM EET. Expect short (<60 seconds) unavailability.

You pushed to changelog Y 2 minutes ago Create merge request
changelog arc-slim / Q Find file L -
Name Last commit > 82f72b6c |fy 3 minutes ago - Added entry in changelog for second fix for negative v... History Last Update
@ debian Use space consistently 2 months ago
@ include Make sure directory exists 4 months ago
B ms Remove libarcdbxml and associated header files since it is not needed by anything (Fixes #3... 4 years ago

Nov 2017 ® nsis Remove RRfiKERePedérsen - ARC F2F Ljubljana 2 yearyago

To fork or not to fork

We could work without forking. Each developer then just makes a
development branch right off of the central git repo.

master You can move around the graph by using the arrow keys.

Pros with forks o

* Working with forks allows each o 1 - Wiyl
developer to make as much mess as tigore. '
he wants without cluttering the
remote official git repo

Begin with the selected commit

(major JAdding gitignore file to major branch.
l ;_]Wr‘ongly added the merge template to major branch. Removed.
l JAdded template for merge requests.
Added entry in changelog for second fix for negative vo numbers.
;]Updated changelog for negative VO number fix.
|| update FEATURES
(minor o Delete .gitlab-ci.yml
;]Add new file
Add new file

Cons with forks

uUpdate .gitlab-ci.yml
l uUpdate .gitlab-ci.yml

l UUpdate .gitlab-ci.yml
""’] N dar w - Y ale Al ., |

* Well, the only con | can think of is
that the public will not see all that is
going on, but that is not necessarily a
con!

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana 18

GitLab functionality ...

* Continuous integration

#93 by

* Currently for test using University cloud

 Builds the branch in a docker container running Ofaled] #02by
on a predefined machine, git clones the repo on
that machine, and performs build, live build on
gitlab, report on success/fail Sl o

e Can be set up for all branches, or some
branches

All 21 Pending 0 Running 0

#91 by

® failed m

passed #89 by

Project Repository Registry Issues 0

Merge Requests 0 Pipelines Wiki Snippets Members Settings

Pipelines Jobs Schedules Environments Charts

Finished 21 Branches Tags

Commit

¥ master o 16364177

Merge branch 'changelog' into 'mast...

¥ master o 9fbf798a

Added gitlab merge request template.

¥ major - ac7082d1
Adding gitignore file to major branch.

¥ major -o- 416527d3

Wrongly added the merge template t...

¥ major o 035232d7
Added template for merge requests.

Stages

@ & 00:18:118
) about 21 hours ago

® & 00:04:45
4 about 22 hours ago

® & 00:09:34
% about 22 hours ago

@ & 00:19:27
4 about 22 hours ago

® & 00:17:34

4 about 22 hours ago

* Depends on space on the build machine used

* Marek has set up Cl and deployment using
Jen@s from our svn

. http://autodeploy.grid.upjs.sk:8080/

e Will integrate this into our git repo, not started
sorting out details here yet

* He has also set up rpom production. Remains to
set up for all supported platforms

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana

master

script:

- make

only:

- master
- minor
- major

Update .gitlab-ci.yml
Maiken committed a day ago

« This GitLab CI configuration is valid. Learn more

[® .gitlab-ci.yml 172 Bytes Iy
centos-build-arc:
image: maikenp/centosarc?

stage: build

- ./autogen.sh
- ./configure

- make install

arc-slim / .gitlab-ci.yml

19

C @

@ NDGF dashboard - |... E mkn E docu B technical E pages m Schedule overview -... :

Jenkins

® autodeploy.grid.upjs.sk:8080

. 9%

Abel User Administr...

5 NorduGrid 2017 (27...

® Search

== Grid Monitor ﬁ epel-mattias-updates

CETR—

n & e @

€& NelC AHM 2018

login

Jenkins

&) People

» Build History

,Q Credentials

Build Queue

No builds in the queue.

Byild Evanuitar Ciatuie

v

Q@ B

Ilcon: SML

Name |

test build pipeline trunk 23 hr -

test job trunk

Jenkins

Jenkins test_job_trunk

» Back to Dashboard

Q) search @

log in

1] Jsenkins Al

2 % Back to Dashboard
Status

» Changes
Full Stage View

L_J Subversion Polling Log

Build History
find

@ #51 Nov 22, 2017 10:16 PM

@ #50 Nov 21, 2017 5:16 PM
{ @ #49 Nov 17, 2017 5:16 PM
| @ #48 Nov 10, 2017 4:16 PM
|
{ @ #47 Nov 9, 2017 12:16 AM
| @ #46 Nov 4, 2017 9:16 PM

@ #45 Nov 1, 2017 9:36 PM
{ W #44 Nov 1, 2017 8:16 PM

@ #43 Oct 27,2017 11:16 PM
| 9 #42 Oct 25, 2017 10:16 PM

test_build_pipeline_trunk

Pipeline test_build_pipeline_trunk

2#" Recent Changes
e ™

Stage View

count

Checkout Autogen

45s 1min 58s

Nov 22

22:16

Nov 21

17:16

New 17

ENABLE AUTO REFRESH

Test Result Trend

.0g
arnings

arnings

2 3 g @ & P Pl 8

Configure Make Make Check Make Dist
2min 46s 55min 48s 17min 21s 1min 27s
2] 56min 3s 17min 17s
'2:48 PM
5 55min 7s 17min 17s '5:19 AM
'5:19 AM

Nov 9, 2017 5:19 AM

#51

Last Success

6 hr 35 min - #70

g ¢ g g
just show failures) enlarge 5 Compiler Warnings

trend =

Workspace of test_job_trunk on

]

ENABLE AUTO REFRESH

Last Failure Last Duration

N/A 1 hr 20 min

N/A 2 hr 22 min

rpmtop / RPMS / x86 64 / B>

nordugrid-arc-arex-trunk-1.el7.centos.x86 64.rpm
nordugrid-arc-cache-service-trunk-1.el7.centos.x86 _64.rpm

nordugrid-arc-client-trunk-1.el7.centos.x86 _64.rpm
nordugrid-arc-datadelivery-service-trunk-1.el7.centos.x86 64.rpm
nordugrid-arc-debuginfo-trunk-1.el7.centos.x86 64.rpm
nordugrid-arc-devel-trunk-1.el7.centos.x86 64.rpm
nordugrid-arc-egiis-trunk-1.el7.centos.x86 _64.rpm

[| nordugrid-arc-gridftpd-trunk-1.el7.centos.x86_64.rpm

nordugrid-arc-hed-trunk-1.el7.centos.x86 64.rpm
nordugrid-arc-misc-utils-trunk-1.el7.centos.x86 64.rpm

[~ | nordugrid-arc-plugins-gfal-trunk-1.el7.centos.x86_64.rpm
[~ nordugrid-arc-plugins-globus-trunk-1.el7.centos.x86_64.rpm
[~ nordugrid-arc-plugins-needed-trunk-1.el7.centos.x86 _64.rpm

master

97.43 KB view
14

Bview

38 KBview

79 KB view

VIB view

nordugrid-arc-plugins-s3-trunk-1.el7.centos.x86 64.rpm 39.32 KB view

nordugrid-arc-plugins-xrootd-trunk-1.el7.centos.x86 _64.rpm 44.47 KB view

[~ | nordugrid-arc-trunk-1.el7.centos.x86 _64.rpm 1.59 MB view

[] python2-nordugrid-arc-trunk-1.el7.centos.x86_64.rpm 1.81 MBview
&= (all files in zip

‘7:‘search

G . I_ I Project Repository Registry Issues 0 Merge Requests 0 Pipelines Wiki Snippets Members Settings
e 00 It a

List Board Labels Milestones

L] L)
fu n Ct | O n a | I ty PR Labels can be applied to issues and merge requests. Star a label to make it a priority label. Order the prioritized labels to change their relative pricrity, by dragging. New label

Prioritized Labels

a
I SS u e S Star labels to start sorting by priority

Other Labels

* | expect we continue using

r @ Project Label view merge requests view open issues Subscribe 1 (& i

bugzilla f ti
u gz I a O r re p O r I n g %4 Project Label view merge requests view open issues Subscribe 1 (&]
b u gs/fe a t u re s ° r . Project Label view merge requests view open issues Subscribe t (&

() I SS u e S i n G it La b Ca n b e u Se d vr @ Project Label view merge requests view open issues Subscribe t (& W
by d eve | O p e rS O n |y. y«@ll discussion Project Label view merge requests view open issues Subscribe 1 (& W

*4 Project Label view merge requests view open issues Subscribe f (@ W

* Must decide how actively we

u S e i SS u e s . j*@ll enhancement Project Label view merge requests view open issues Subscribe 1 (& [

Project Label view merge requests view open issues Subscribe f (@ W

* One issue per merge? Point
to bugzilla record? “

e
° Use issue to d iscuss a nd w Project Label view merge requests view open issues Subscribe f (@ W
request feature?

Project Label view merge requests view open issues Subscribe f (@ W

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana 21

... GitLab functionality

Many possibilities available

* Milestones
* Organizes issues and merge requests into a cohesive group.

* Can be used keeping track of an upcoming software version.

 Work flow boards
 Can be used to track issues

= U_[r nordugrid / arc-slim v

e Release notes
* Plantosetup
automatic draft of
release notes based on - s ol
commit
messages/merge
commits/issues

Project Repository egistry ssues

v] Merge Requests 0

List Board Labels Milestones

How to do releases, and how to use various
GitLab functionality

* How can current release procedure be simplified/automated/improved ?
* Release notes should be pushed to web automatically once the rpms are available

* Move release notes from doc repo to arcl docs
* Will at last have release note tag same as release
e Other suggestions?

Release notes on GitLab?
Documentation on GitLab?
Webhooks — read-the-docs?
Webhooks — bugzilla?

Content of release notes:

* Each merge reo,uest should be linked to an issue? That means one must create an issue in GitLab
that e.g. could link to a bugzilla bug/feature request.

* Not clear to me how it will look if we issues, or just merge request comments for release notes. Needs some
testing once set up.

Automatic merging

* Want to set up automatic merging of bugfixes

* When bugfixes are merged onto master branch, port (merge) these to minor
and major branch

* Requires use of tags and possibly use of issues for merging

* To be sorted out

* https://www.atlassian.com/blog/git/git-automatic-merges-with-
server-side-hooks-for-the-win

Useful things

Nov 2017

Maiken Pedersen - ARC F2F Ljubljana

25

Git log with graph option

1x-193-157-237-153Rarc-slim (git:master)$ git log ——-pretty=format:"%h %s" —--graph
x 163641772 Merge branch 'changelog' into 'master'

—

82f72b6c7 Added entry in changelog for second fix for negative vo numbers.
9fbf798ae Added gitlab merge request template.

9d80215cf Update FEATURES

086874ae9 Update .gitlab-ci.yml

——— %

~

9dd5b446a Update .gitlab-ci.yml
9d66efecs Update .gitlab-ci.yml
al68c8al6 Update .gitlab-ci.yml

Ld e cAAMN et Nl ———ede T e o2 . emal

XX K — X X K

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana 26

Useful tip: to always see which branch you
are on:

In .bashrc do:

parse _git branch() {
git branch 2> /dev/null | sed -e '/"N["*]1/d' -e 's/* \(.*\)/ (git:\1)/'

Y
export PS1="\h@\W\$(parse git branch)\[\033[00m\]}$

Committed, but want to change the commit
message?

git commit —amend

* If you just committed, and have not made any changes, this will just
open the editor with your last commit message, and you can edit it

* If you did make changes, add those, and with git commit —ammend,
the changes will be committed, together with the (edited) commit
message

* The second commit replaces the first one, so you will only have a
single commit

Getting help

e https://git-scm.com/book/en/v2/Getting-Started-About-Version-

Control
e Chap 1-3 are very useful

* https://learngitbranching.js.org/
e https://try.github.io/levels/1/challenges/1

Nov 2017 Maiken Pedersen - ARC F2F Ljubljana

29

Nov 2017

Git Cheat Sheet

git init
<directory>

git clone <repo>

git config
user.name <name>

git add
<directory>

git commit -m

""<message>"

git status

git log

git diff

Create empty Git repo in specified directory. Run with no arguments
to initialize the current directory as a git repository.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

Define author name to be used for all commits in current repo. Devs
commonly use —-global flag to set config options for current user.

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

Commit the staged snapshot, but instead of launching a text editor,
use <message> as the commit message.

List which files are staged, unstaged, and untracked.

Display the entire commit history using the default format.
For customization see additional options.

Show unstaged changes between your index and working directory.

Undoing Changes

git revert
<commit>

git reset <file>

git clean -n

YAtlassian

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

Shows which files would be removed from working directory. Use
the -f flag in place of the -n flag to execute the clean.

Maiken Pedersen - ARC F2F Ljubljana

Rewriting Git History

git commit
——amend

git rebase <base>

git reflog

Git Branches

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
a branch name, a tag, or a relative reference to HEAD.

Show a log of changes to the local repository’s HEAD. Add
--relative-date flag to show date info or --all to show all refs.

git branch

git checkout -b
<branch>

git merge <branch>

List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branchs.

Create and check out a new branch named <branch>. Drop the -b
flag to checkout an existing branch.

Merge <branch> into the current branch.

Remote Repositories

git remote add
<name> <url>

git fetch
<remote> <branch>

git pull <remote>

git push
<remote> <branch>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.

Fetches a specific <branch>, from the repo. Leave off <branch> to
fetch all remote refs.

Fetch the specified remote’s copy of current branch and immediately
merge it into the local copy.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

30

Visit atlassian.com/git for more information, training, and tutorials

Nov 2017

Additional Options +

git config --global
user.name <name>

git config --global
user.email <email>

git config --global
alias. <alias-name>
<git-command>

git config --system
core.editor <editor>

git config
--global —-edit

git log -<limit>

git log --oneline

git log -p

git log --stat

git log --author=
"<pattern>"

git log
—-—-grep="<pattern>"

git log
<since>..<until>

git log —— <file>

git log --graph
—-decorate

YAtlassian

Define the author name to be used for all commits by the current user.

Define the author email to be used for all commits by the current user.

Create shortcut for a Git command. E.g. alias.glog log --graph
—-oneline will set git glog equivalenttogit log --graph --oneline.

Set text editor used by commands for all users on the machine. <editor>
arg should be the command that launches the desired editor (e.g., vi).

Open the global configuration file in a text editor for manual editing.

Limit number of commits by <1limit>. E.g. git log -5 will limit to 5
commits.

Condense each commit to a single line.

Display the full diff of each commit.

Include which files were altered and the relative number of lines
that were added or deleted from each of them.

Search for commits by a particular author.

Search for commits with a commit message that matches <patterns.
Show commits that occur between <since> and <until>. Args can be a
commit ID, branch name, HEAD, or any other kind of revision reference.

Only display commits that have the specified file.

--graph flag draws a text based graph of commits on left side of commit
msgs. —-decorate adds names of branches or tags of commits shown.

Maiken Pedersen - ARC F2F Ljubljana

git diff HEAD

git diff --cached

git reset

git reset

git reset —-hard

git reset <commit>

git reset —-hard
<commit>

git rebase

Show difference between working directory and last commit.

Show difference between staged changes and last commit

Reset staging area to match most recent commit, but leave the
working directory unchanged.

Reset staging area and working directory to match most recent
commit and overwrites all changes in the working directory.

Move the current branch tip backward to <commit>, reset the
staging area to match, but leave the working directory alone.

Same as previous, but resets both the staging area & working directory to
match. Deletes uncommitted changes, and all commits after <commit>.

git rebase -i
<base>

Interactively rebase current branch onto <base>. Launches editor to enter
commands for how each commit will be transferred to the new base.

git pull --rebase
<remote>

git push <remote>
——force

git push <remote>
--all

git push <remote>
--tags

Fetch the remote’s copy of current branch and rebases it into the local
copy. Uses git rebase instead of merge to integrate the branches.

Forces the git push even if it results in a non-fast-forward merge. Do not use
the —-force flag unless you're absolutely sure you know what you're doing.

Push all of your local branches to the specified remote.

Tags aren’t automatically pushed when you push a branch or use the
--all flag. The --tags flag sends all of your local tags to the remote repo.

Visit atlassian.com/git for more information, training, and tutorials

31

Hands-on training

Plan hands on

* We practice the workflow
* | will do some bugfix merges into the master branch

* You will have to keep your feature branch up to date with the
upstream repo

* When ready you push to your remote fork branch, then do a merge
request

* We try various variations of this
e Using tags and issues for each development for instance

