
aCT: an introduction

1

History
● NorduGrid model was built on philosophy of ARC-CE and distributed storage

○ No local storage - data staging on WN is too inefficient
○ No middleware or network connectivity on WN
○ Everything grid-related was delegated to ARC-CE

● Panda and pilot model did not fit easily
○ An intermediate service was needed to fake the pilot and submit to ARC behind the scenes
○ ~2008 ARC Control Tower (aCT) was written by Andrej and ran in Ljubljana
○ 2013-14 aCT2 was written and the service moved to CERN

■ Multi-process instead of multi-thread, MySQL instead of sqlite
○ 2015-17 Many sites moved from CREAM CE to ARC CE

■ Creation of truepilot mode

2

APF vs aCT (NorduGrid mode)

3

NorduGrid mode
● AGIS: pilotmanager = aCT, copytool = mv
● aCT has to emulate certain parts of the pilot

○ getJob(), updateJob()

● Post-processing
○ Pilot creates pickle of job info and metadata xml of output files
○ ARC wrapper creates tarball of these files along with pilot log
○ aCT downloads this tarball after job has completed
○ Log is copied to web area for access via bigpanda stdout links
○ Pickle info is altered to set schedulerid and log url
○ Output files are validated (check size and checksum on storage vs pilot xml)
○ Job info and xml are sent to panda with final heartbeat

● If job fails badly (pilot crash or batch system kill) and no pilot info is available
○ aCT sends what it can to Panda
○ Error info and timings from the CE 4

True pilot
● AGIS: pilotmanager = aCT, copytool != mv
● For sites running ARC CE who do not

need the full “native” mode with staging
etc

● aCT fetches the payload and submits it to
the ARC-CE

● ARC-CE submits the batch job with
predefined payload and requirements

● Pilot on the worker node does the same
as on the conventional pilot sites, but
skips the fetching of payload from PanDA

● aCT sends heartbeats to Panda up until
job is running, then leaves it to pilot

5

Event service (NorduGrid mode)
● For SuperMUC HPC and ES on BOINC, aCT prefetches events

○ getEventRanges() is called directly after getJob()
○ A file with the eventranges is uploaded to the CE when job is submitted
○ If pilot sees the eventranges file it uses it instead of asking Panda

● When job finishes, metadata xml is copied back to aCT to see which events
were done

● aCT calls updateEventRanges() with the completed events

● For true pilot ES jobs aCT does nothing special

6

General Architecture

● Overview in this doc

7

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369hoYY1XIA2x0dk/edit?usp=sharing

aCT Daemons
ATLAS Daemons:
● aCTPandaGetJob: Queries panda for activated jobs and if there are any, gets jobs
● aCTAutopilot: Sends heartbeats every 30 mins for each job and final heartbeats
● aCTAGISFetcher: Downloads panda queue info from AGIS every 10 minutes. This info is used to know which queues to serve and

the CE endpoints.

ARC Daemons (use python ARC client library):
● aCTSubmitter: Submits jobs to ARC CE
● aCTStatus: Queries status of jobs on ARC CE
● aCTFetcher: Downloads output of finished jobs from ARC CE (pilot log file to put on web area, pickle/metadata files used in final

heartbeat report to panda)
● aCTCleaner: Cleans finished jobs on ARC CE
● aCTProxy: Periodically generates a new VOMS proxy with 96h lifetime

Internal Daemons:
● aCTPanda2Arc: Converts panda job descriptions to ARC job descriptions and configures ARC job parameters from AGIS queue

and panda job info
● aCTValidator: Validates finished jobs (checksum of output files on storage etc) and processes pilot info for final heartbeat report

8

Service setup and configuration
● 2 prod machines and 2 dev machines at CERN
● Prod machines use MySQL DBonDemand, dev machines have local MySQL
● Configuration is via 2 xml files, one for ARC and one for ATLAS
● One prod machine runs almost all jobs
● One prod machine is warm spare running one job per queue

○ <maxjobs>1</maxjobs> can be changed if main machine goes down

● Central services admin twiki

9

https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/ARCControlTower

Current status
● ~200k jobs per day from

one machine
● Peak 250k jobs per day
● Increase in last couple of

months probably FZK

10

Sites served
● T1: FZK, RAL, NDGF (4 sites), TAIWAN
● T2: CSCS, DESY, LRZ, TOKYO, MPPMU, BERN, WUPPERTAL, SiGNET, LUNARC
● T3: ARNES, SiGNET-NSC, UNIGE
● HPC: CSCS (PizDaint), LRZ (SuperMUC), IN2P3-CC (IDRIS, in testing), MPPMU

(Draco + Hydra), SCEAPI (4 CN HPCs)
● Clouds: UNIBE Switch cloud
● Others: BOINC
● Full list at https://aipanda404.cern.ch/data/aCTReport.html

NorduGrid
Truepilot

11

https://aipanda404.cern.ch/data/aCTReport.html

Unified queues
● Only change required in aCT

was to take corecount from job
instead of queue

● FZK went from 7 to 3 (soon 2)
queues

12

Panda communication
● getJob, updateJob, getJobStatisticsWithLabel (to check for activated jobs)
● getEventRanges, updateEventRanges
● Heartbeats sent every 30 mins or after status change

○ ~70k heartbeats/hour = 20Hz
○ A single process handles all jobs
○ A slight problem in communication with panda server can lead to large backlog
○ Solutions:

■ Heartbeat-less jobs while job is under aCT’s control?
● Only send heartbeat when status changes
● When truepilot job is running it sends normal heartbeats

■ Bulk updateJob in panda server

13

Condor submission
● Separate DB table for

condor jobs
● Submitter/Status/Fetcher/Cle

aner for Condor
● Panda2Condor to convert

pandajob to ClassAd
● Truepilot only

14

Condor submission
● Prototype has been implemented using condor python bindings (>= 8.5.8 needed)
● Using standard EU pilot wrapper

○ with one modification to copy the job description to working dir

● Submitter adds
○ ‘GridResource’: ‘condor ce506.cern.ch ce506.cern.ch:9619’

● One example job
○ https://bigpanda.cern.ch/job?pandaid=3696722817

15

{'Arguments': '-h IN2P3-LAPP-TEST -s IN2P3-LAPP-TEST -f false -p 25443 -w
https://pandaserver.cern.ch',
 'Cmd': 'runpilot3-wrapper.sh',
 'Environment':
'PANDA_JSID=aCT-atlact1-2;GTAG=http://pcoslo5.cern.ch/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Clu
ster).$(Process).out;APFCID=$(Cluster).$(Process);APFFID=aCT-atlact1-2;APFMON=http://apfmon
.lancs.ac.uk/api;FACTORYQUEUE=IN2P3-LAPP-TEST',
 'Error': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).err',
 'JobPrio': '100', ←-- taken from job description
 'MaxRuntime': '172800', ←-- taken from job description or queue
 'Output': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).out',
 'RequestCpus': '1', ←-- taken from job description
 'RequestMemory': '2000', ←-- taken from job description or queue
 'TransferInputFiles': '/home/dcameron/dev/aCT/tmp/inputfiles/3697087936/pandaJobData.out',
 'Universe': '9',
 'UserLog': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).log',
 'X509UserProxy': '/home/dcameron/dev/aCT/proxies/proxiesid5'}

import htcondor
sub = htcondor.Submit(dict(jobdesc))
with schedd.transaction() as txn:
 jobid = sub.queue(txn)
return jobid

https://bigpanda.cern.ch/job?pandaid=3696722817

Future plans
● Move code from gitlab to github
● Rename to ATLAS Control Tower (since it’s not ARC-specific any more)
● Better monitoring through APFmon, then harvester monitoring in bigpanda

16

