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Taking a step back: why are we here?

® Understanding the basic constituents of the
Universe and the forces that govern them

» Are there additional symmetries of Nature (+ new
particles) other than those described by the

Standard Model? SUSY? Something else!?

» Are quarks and leptons the smallest object that
exist, or do they have internal degrees of
freedom?

® Understanding how cosmology and fundamental
physics interact

» What is gravitation? Why is it so weak?
» What is Dark Matter? And Dark Energy?
» How did matter behave just after the Big Bang?

» Where did all the anti-matter go after the Big
Bang!?




How to discover New Physics

® DIRECT searches: looking
for evidence of new particles

» SUSY, exotica, microscopic
black holes

® INDIRECT searches: making
high-precision measurements
of known particles to observe
deviations from SM
predictions

» SM bosons: Higgs,W, Z,y
» Top quarks and B-hadrons

» Heavy lon collisions
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LHC status

() Availability Stable beams

49.7%

(C)) Fault vs Operation Time Distribution

Stable
Beams

49.7%

Pre-cycle 1.3%

() Min Turnaround

0.9h

() Avg Turnaround

/.6h

() Max Turnaround

39.3h

() Fault labels
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(C)) Fault count
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Peak Luminosity [10** cm2s-

Integrated Luminosity [fb™]
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Status of the experiments

Data mcluded from 2018-04-17 10:54 to 2018-05-29 11:18 UTC
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Physics: Associated production of Higgs bosons

and top quark pairs Breaking news! R

® Hugely important result

g > t : :
» Extremely important to measure directly the
top quark Yukawa coupling (close to | in the
----- H SM)
o <« » If it were to deviate from unity, it would be
clear evidence of New Physics, so studying
. t this vertex is hugely important
\\\H » First direct observation of how the Higgs
couples to a quark
g t ® Difficult measurement
¢ » Both Higgs Bosons and Top Quarks can decay
. into a large variety of final states
\\H
» Both have challenging backgrounds
q t » And then you are looking both both in the

same event!



Physics: Associated production of Higgs bosons

and top quark pairs Breaking news! IR

Top Pair Branching Fractions 1= 1 0 —g
i

“alljets™ 46%

77 _3

t+ets 15%

—
1

Higgs BR + Total Uncert
o

X

L+jets 15%

v, )
ets 15% L i | ~—
e+eS - | | | | | | | | | | | | | | | | |
J ° 1050 100 120 140 160 180 200

“"dileptons™ "lepton+jets™ M, [GeV]




Physics: Associated production of Higgs bosons

and top quark pairs

e Observed
_CMS — 1o (stat @ syst)
) | m— 110 (Syst)
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Breaking news!

| | | | | | | | | | | | | | | | | | | | | | | | | | |
ATLAS e Total | | Stat. [ Syst — SM
Vs=13TeV, 36.1-79.8 fb"

Total Stat. Syst.
ttH (bb) @ 0.79= 000 (= o5 ,=0.53)
ttH (multilepton) He=— 156+ 082 (= 030 4 030
ttH (yy) 139+ 093 (= o35 % o1y )
ftH (Z22) Je <1.77 at 68% CL
Combined H=—H 132 028 (£0.18,= 02)
] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ]

-1 0 1 2 3 4
SM
Oy O



Physics: Associated production of Higgs bosons

and top quark pairs

5.1 fb (7 TeV) + 19.7 b (8 TeV) + 35.9 fb' (13 TeV)

- CMS
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Observation of events containing two hard-scatter processes at high pileup

m 2 Z — uu candidates from different pp interactions, but in the same bunch-crossing, observed in 2017 data
» their production vertices are separated by 67 mm ATL-PHYS-PUB-2018-007

Run: 338220
Event: 2718372349
2017-10-15 00:50:49 CEST

EXPERIMENT

=S 777:7 \‘\ \\\ ) = vr,r; - = ,;:x‘ '. v, ,7\‘ = ’7 = "‘—,—:'/ —

<

A. Marzin (CERN) ATLAS status report 30 mai 2018 6/ 37



Observation of the y,(3P)states =

For the first time the two states y,1(3P) and x;,(3P),
corresponding to J=1,2, are resolved

The mass difference is measured to x5 (3P) mass resolution 2.2MeV

be:
AM = 10.60 + 0. 64(stat) + 0. 17(Sy5t) MeV 100:— CMS

= Most predictions from non- - (5=13TeV

perturbative QCD range from 8 80~ L=80.01"
to 18 MeV -

= One predicts -2 MeV reflecting
the coupling with the open-
beauty threshold

60 — Total fit

--- Signal Yo 2(3P)

Events / 3 MeV

----- Background

The masses of the two states are s |14J1 L

My = 1051342+ 0.41(stat) +0.18(syst) Mev 0% 0% 08 o O
M, = 10524.02 + 0.57(stat.) + 0.18(syst.) MeV

arXiv1805.11192
04/06/18 17




Searches for high-mass di-lepton cMs,

S
resonances —
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Searches for W’ with 80 fb~!

m search for W/ — ¢v updated with 80 fb~!

= WS/SM masses below 5.6 TeV are excluded
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And there’s so much more...

® L HCC reports (last week)
» https://indico.cern.ch/event/726320/

® | HCP conference (ongoing)

» http://lhcp2018.bo.infn.it

® Tantalising signs of flavour anomalies

® Precise measurements
» Multi-boson production
» Higgs boson production
» CP violation in new processes
» New B-hadrons and quarkonia species

® Searches - sadly no discoveries but lots of limits...

|6


https://indico.cern.ch/event/726320/
http://lhcp2018.bo.infn.it

Challenges and opportunities for Software and Computing
in LHC Runs 3 and 4

Slides largely inspired by Graeme Stewart’s talk @ Spatind 2018 conference

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK

T - — —

e e .  ———

- faar



https://indico.cern.ch/event/666278/contributions/2830239/attachments/1579352/2495271/Advances_in_software_and_computing_for_HEP.pdf

Technology evolution |18

® CPUs are not getting faster, but they are

Processor Scaling Trends

getting wider o0
@ Clock Speed (MHz)
. . @ Transistors (millions)
® To continue to ride the wave of Moore’s | e
Law we must make use of multi-threading -
and vectorisation ;
® Co-processors such as GPUs can deliver =
improved throughput but code must be e 3,
e &
re-cast to make optimal use of each oo
. 1970 1980 Date 2000 2010
architecture
C. Leggett, LBNL
® Other issues: 100000
» Deeper hierarchy of CPU caches oo L e e
means that cache misses are very
Costly as data is hauled up thrOugh the g L 000 T T PP PRI £ PP PP
€ rocessor
layers -
» 1/O performance not keeping up with IS T SR———————
storage capacities
1I 980 1985 1 9l90 1 9.95 20I00 202)5 2010

® Network capacities continue to grow —
impressively J. Hruska



What is driving technology evolution? |9

® Not experimental particle physics, for sure!

® Power consumption
» Mobile devices
» Internet of things
® Machine learning (= lots of matrix manipulations)

» Specialist architectures (neural/tensor processing units)
now appearing to support the efficient running of these
applications

® Computing is moving to clouds as organisations try to reduce
their in-house resources and large technology companies
offer more and more internet-based consumer services



LHC Runs 3 and 4

20

Year
CoM energy (TeV)

Lumi/Nominal

JL at end of run
(fb-)

Run 4-5
Run 2 Run 3 (HL-LHC)
2015-2018 2021-2023 2020+ +
13 14 14

1.0 (2015-2016)

2.5 (2017-2018) 2+

150

Increasing data volumes, rate and event complexity




Increasing complexity and rate
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Rest of run 2 and run 3: smart & efficient use of existing model will see us
through
Run 4: <p> ~ 200 and much higher rate - need to do things very differently

— we must be able to make full use of evolving technology to have a hope of
keeping up with the HL-LHC
This means that our software has to change radically



How are we doing?
Could do better...

Geant4 Simulation

0.2
G. Stewart

Westmere 2010
o e Westmere 2010
0.15

e Sandy Bridge 2011

@ Haswell 2013
01 e |lvy Bridge 2012

Fraction of peak FLOPs realised

0.05 Skylake 2014 e

0
0.000 10.000 20.000 30.000

Single Core GFLOP Performance

Wider vector registers that we aren’t fully using...

Expensive cache misses due to deeper hierarchies...
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Making use of frameworks

® We can’t re-write everything

® Making optimal use of concurrency and vectorisation can be frustrating, even for
experts and even with abstraction libraries

® The software frameworks used by the experiments are our friends in this regard

» These provide the basis of the algorithmic processing, persistent/transient layers,
services, tools etc

» Incorporate as much of the concurrency and vectorisation into the framework and
shield those writing algorithmic code from the ugly details

» But we still need people to implement the core software - and the migration is still
not zero-work for the clients

® This approach has been used in the experiments: CMS is already multi-threaded;

ATLAS has a multi-process framework in use (AthenaMP) and plans to be multi-
threaded in time for Run-3 (AthenaMT)

® The same approach can be used for dealing with increasing inhomogeneity of
resources, e.g. from volunteer computing to grid sites to HPCs to commercial clouds

® Some elements of the frameworks are shared between experiments: further sharing
could reduce the workload (see later)

23



Total Throughput vs Memory for Fully Loaded Machine

0.7
2 processes 3 processes 6 processes 12 processes
6 thread/process + 4 thread/process 2 thread/process + thread/process
5 streams
— + 4 streams 2 streams 1 streams
8 0.6 +
9D
%) ++
< 0.5
C .
o) 2 processes
> 6 thread/process
3 6 streams
= 0.4
>
E— 1 process ]
process
12 thread/
g’ 03 10 Strr::m:rocess 12 thread/process
12 streams
O
L
— 0.2
©
©
— 0.1
C.Jones (CMS), CHEP2016
0
0) 0.5 1 1.5 2

Average Memory Used Per Core (GB)

Multithreaded framework allows use of low per-core
memory whilst maintaining throughput



Machine learning 25

® Long history in HEP: BDTs and shallow neural
networks used since the 1980s

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

» Instrumental in discovery of single top quark =7 output layer
production and Higgs measurements

» We called it “multivariate analysis” : ;

® More powerful computers and bigger training
datasets have led to the growth of “deep S
learning” and an accompanying cluster of high- —
performance open source tools from outside

A. Farbin
HEP c | | | | |
. . . . -g Ll I 7]
® Possibly this has revolutionary potential at all 3 It S
levels of the field L osh _
. . ° . ° -o ) N
» Simulation, reconstruction, physics analysis, 5
automation of shift work, optimisation of S °° Sy
’ P 3) -------- DN lo+hi-level (AUC=0.88)
computing resources, anomaly detection § 04k _
® Need good links with academic and commercial | - 2ol DIRGES U
0.2 W -
experts :
N DN hi-level (AUC=0.80)
® Challenges our current data processing model o b
] ] | | |
0 0.2 0.4 0.6 0.8 1

® Fortunately, there is a very strong and wide

interest in ML across the field Signal efficiency



Facilities and data management 26

® Storage and computing are overwhelmingly from WLCG resources

» This is expected to continue into Run 4, but with other resources in the mix
® Volunteer computing, commercial clouds, HPCs

» Need to ensure our software can work seamlessly in these environments
® How to take fullest advantage of major improvements in network capacity?
® Data lakes!?

® Strengthen links with other big data sciences especially with regards to sharing
network resources

® Storage is a major challenge for HL-LHC
» Sheer volume

» How to support fast access for analysis and machine learning?

» High granularity access for using opportunistic resources...

» Technologies: more SSD, less disk? Relative costs of tape?



Software development, management and packaging By

@ git

® Very significant improvements in this regard in the
past years

» Widespread adoption of Git, CMake, code review
via GitHub/Lab, continuous integration techniques

» Software is more portable than in the past

® CVMFS

) GitHub

® Slimmed-down builds for laptop analysis

® Container-based analysis

ACMake

Y

docker

® Debugging and optimisation is still very tough:
complicated frameworks often don’t play nicely
with standard tools

» std: :cout << “"Got here 79.5" <L
std: :endl;




Activities and Limitations 28

Raw data trigger Event generation
and archival and simulation

Reconstruction

!

Network

/O Power

We should aim to minimise the limitations that computing and software impose on
our ability to do physics research

Storage

Computation

People




fydashbe

Completed jobs (Sum: 29,007,372)
Analysis - 37.06%

MC Simulation - 29.51%

TO Processing - 12.64%

M Analysis - 37.06% (10,750,480) M MC Simulation - 29.51% (8,560,811) I TO Processing - 12.64% (3,667,753)
[ Others - 8.53% (2,473,403) M Group Production - 6.87% (1,992,469) B MC Reconstruction - 4.54% (1,317,520)
I Data Processing - 0.84% (244,936)



Event generation 30

® Event generation begins the data processing chain with a physics
simulation of the proton-proton collision, creation of initial states and
evolution into final states that interact with the detector

» As our knowledge of the Standard Model improves and more precise
measurements are needed, we require higher-precision generation

» Leading order has modest CPU requirements, next-to-leading is less

trivial, but the HL-LHC will widely require NNLO: serious computing
requirement

® Generators are written and maintained in the theory community, and

maintenance of common software (e.g. HepMC, Rivet, LHAPDF) needs
to be maintained

» Some widely-used generators are not thread-safe

® Side point: event generation is particularly suited to closed HPCs since
it has no input and small output



Detector simulation 3|

® This is our biggest consumer of CPU and it will only get bigger
® We do know how to speed it up already

» More use of parameterisation

» More use of partial simulation (e.g. only simulating regions around
particles of interest)

» Main challenge is validation

® Improved physics models
e Adapting to new computing architectures j§
® Advances in geometry modelling
® Machine learning?

» Generative-adversarial systems!?

» Validation will be tough...




Reconstruction

® Reconstruction (especially tracking) is
particularly vulnerable to high pile-up
and high track density

» Especially at the clustering/pattern
recognition step

» Not clear our current physics
performance can be maintained at

high <pU>, especially at low
momentum, with current algorithms

® This is a key area for use of
concurrency and vectorisation

® Maybe machine learning can help!?

» Kaggle Challenge

® Beautiful presentation by Andi
Salzburger @ Spatind 2018 describing
the challenges in detail

rimm]

< walltime/event > [s]

200 p-p collisions
HL- LHC conditions

LI

Reconstruction in rel. 21.0.37:

|
job count

ml
—
o

w

- high-mu run 335302 (2 051 jobs)

produced only single (AOD) output 2

—_
o
N
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o
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https://www.kaggle.com/c/trackml-particle-identification
https://indico.cern.ch/event/666278/contributions/2830627/attachments/1579364/2495228/2018-01-04-Salzburger-Spatind-Conference.pdf

Analysis and analysis models 33

Number of Physical Bytes (in TBs) for 2018-06-05 (Sum: 281,980)

® How to enable analysts to do their work
efficiently?

aod - 29.02%
® Tensions daod - 18.95%

» Flexibility vs resources vs uniformity vs
imagination vs exceptions

» Central processing vs user processing

» Local analysis vs distributed analysis vs
cloud analysis | w2

» Many formats vs few formats (- 15.68%

» Python vs C++

® How to account for changing calibrations

within a restricted resources envelope! Derivation hits - 12.26%
framework B
. . . . Ath ~ .
e Experiments’ analysis models differ widely ~ “"*™ - Athena-based analysis
[CP—%
. . 3 (CP)
» No single correct answer: requires
continual review and willingness to change ROOT-based analysis
~PB

® How to preserve physics data for the future
(massive topic by itself...)

® Will we ever do our analysis by means other
than looping over TB-sized ROOT files!? Reconstruction

(Athena)



y

® Conditions data access (opportunities for joint
projects)

® Security
® Visualisation
® Analytics (yes, this is useful for physicists as well...)

® |/O and layout of data in memory; compression
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® Not controversial to say that most experiments have a desperate shortage of people
willing and able to work on software and computing

» This comes at a time when we can’t rely on technology improvements to keep us
afloat

® We need to support

» People who eventually plan to go into industry — need to stay relevant and provide
training in modern technologies that are transferrable to the commercial or public

sectors

» People who want long-term careers in HEP — need to recognise SW&C work as
equal to detector and physics analysis work

® As things become more complicated we need physics leaders with strong interests
in SW&C

® We need to improve our citation and publication record

® We must invest in training our community at different levels from basic analysis to
advanced software engineering

® Collaboration with those from other academic fields and industry is important in this
regard



A Roadmap for HEP Software and Computing R&D for the
2020s: https://arxiv.org/abs/1712.06982

Advancing from here HSF

e Community White Paper process has been a success

@ Engaged more than 250 people and produced more than 300 pages of detailed description in many areas
e Summary roadmap lays out a path forward and identifies the main areas we need to invest in

for the future for our software upgrade
© Supporting the HL-LHC Computing TDRs and NSF S2I2 strategic plan
o  You can still sign :-)
e HEP Software Foundation has proved its worth in delivering this CWP Roadmap
o Achieving a useful community consensus is not an easy process

© Sign up to our forum to keep in touch and get involved (hep-sf-forum@googlegroups.com)
e We now need to marshal the R&D efforts in the community, refocusing our current effort and

helping to attract new investment in critical areas

@ The challenges are formidable, working together will be the most efficacious way to succeed
o HSF will play a vital role in spreading knowledge of new initiatives, encouraging collaboration and monitoring progress
o Next HSF workshop in March, shared with WLCG, should start to put our ideas into practice:

| C++ Concurrency, Workload Management and Frameworks, Facilities Evolution, Analysis Facilities, Training, ...
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