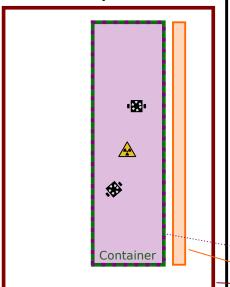
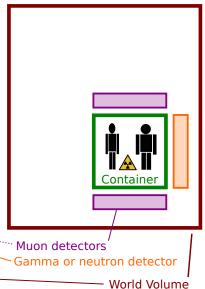

Exercise GEANT4 course, NAFY002, 2018

Makoto Asai (Asai@slac.stanford.edu)
Dennis Wright (DWright@slac.stanford.edu)
Mihály Novák (Mihaly.Novak@cern.ch)

Luis Sarmiento (Luis.Sarmiento@nuclear.lu.se)

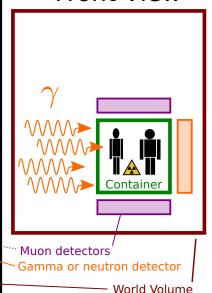




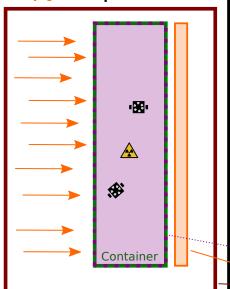
Top View Front View Container ... Muon detectors Gamma or neutron detector World Volume

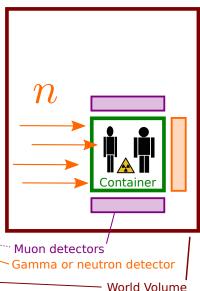

Top View

Front View

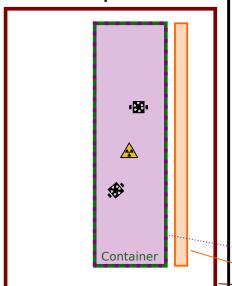


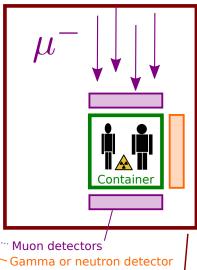
γ Top View




Front View

Top View


Front View



Top View

World Volume

Imaging Software – Examples of other imaging tools... Psuedo colour image Quick Optimize Log Correction Crystal Clear Histogram Functionality Original Image Edge Enhance & Sharpen

Container scanner by gammas, neutrons and muons

- Container:
 - 10 m long, 3 m wide, and 3 m high
 - wall material 5 mm aluminum
 - Fill with air
- Objects inside the container:
 - Varios shapes, sizes, material and positions.
 - Be creative while still keeping it realistic
 - Have fun
- Detectors:
 - 10 m long, 3 m high, and 10 cm thick
 - Material is CsI (γ, μ^-) or scintillator (n)
 - $-\gamma$, n: located with a gap of 10 cm next to the container
 - $-\mu^-$: same gap as (γ, μ^-) but located on top and bellow the container
- Scan beam:
 - 5 MeV gammas, 15 MeV neutrons, and 4 GeV muons
 - Parallel beam uniformly distributed in $10 \, \text{m} \times 3 \, \text{m}$.
 - Sideways direction for γ , and n and downward direction for μ^- .

Requirements

- Physics list:
 - Use FTFP_BERT_HP
- Primary Generator Action:
 - Don't use General Particle Source (GPS)
 - Use ParticleGun and randomize the vertex position
- Object inside the container:
 - Implement at least four objects of different materials
 - Use parameterized volumes for positions and materials
 - You may also use assembly and placement
- Detector plate γ , n:
 - Use command-based scorer and score energy deposition
- Detector plate μ^- :
 - Write to file the interaction positions of the muons in the top and bottom detector
 - Compute offline/online the scattering angle
 - Create 2D histogram $(x,y)_{\mu_{\mathbf{0}}}$ increment its content by the scattering angle

Report

- Deadline Friday October 5th, 2018
 - If need to extend the deadline, contact us.
- Create a report that includes the following:
 - Your name, instute/department name and email address
 - Source code of main() with reasonable amount of comment lines
 - Images of detector plane for gamma and neutron beams made by the scorer
 - Image of 2D histogram for muon scattering
 - A few snapshots of events
- Upload your report to Indico in PDF format

Notes

- iridium account:
- It will live until the deadline including few extra weeks later
- Comunication with teachers:
 - Don't send us emails with large attachment files. If you have a question and need to show us some pictures, upload them to Indico and send us plain text email. Don't use anonymous email accounts, use your institutional email account.
 - Keep all header and source code you implemented as well all macro files.
 We may request you to send them to us.