Hadronic Physics II

Geant4 Tutorial at Lund University

6 September 2018
Dennis Wright

Outline

- Elastic processes and models
- Low energy neutron and proton physics
- Ion-ion physics
- Capture, stopping and fission reactions

Hadron Elastic Scattering

- G4HadronElasticProcess: general elastic scattering
- valid for all energies, all projectiles
- includes p, n, π, K, hyperons, anti-nucleons, anti-hyperons, ...
- uses proton cut values (scaled by Z) for recoil nucleus generation
- Implemented by
- elastic cross section data sets
- elastic models

Hadron Elastic Cross Sections

- G4HadronElasticDataSet (from Geant4/Gheisha)
- G4ComponentAntiNuclNuclearXS
- anti-nucleon and anti-light nucleus elastic scattering from nuclei using Glauber approach
- G4BGGPionElasticXS
- Barashenkov-Glauber-Gribov elastic scattering of pions and from nuclei using Barashenkov parameterization below 91 GeV and Glauber-Gribov parameterization above
- G4ChipsNeutron(Proton)ElasticXS
- elastic cross sections extracted from CHIPS framework

Hadronic Models Implementing G4HadronElasticProcess

p, n
π
K
anti- $\left(p, \alpha, d, t,{ }^{3} \mathrm{He}\right)$
Y, anti- Y, anti- n, α, d, t

Elastic Scattering Validation (G4HadronElastic)

Elastic K_{+}scattering from C at $\mathbf{8 0 0} \mathrm{MeV} / \mathrm{c}$

Elastic K+ scattering from Ca at $800 \mathrm{MeV} / \mathrm{c}$

G4ElasticHadrNucleusHE (1 GeV p on C)

Low Energy Hadron Physics

- Below 20 MeV incident energy, Geant4 provides several models for treating $n, p, d, t,{ }^{3} \mathrm{He}$ and α interactions in detail
- The high precision models (ParticleHP) are data-driven and depend on a large database of cross sections, etc.
- the G4NDL database is available for download from the Geant4 web site
- TENDL optional database is also available
- elastic, inelastic, capture and fission models all use this isotopedependent data
- There are also models to handle thermal scattering from chemically bound atoms

High Precision Particles

- ParticleHP models provide elastic, inelastic, capture and fission for incident $n, p, d, t,{ }^{3} \mathrm{He}, \alpha$
- mostly below 20 MeV for n
- 0 < E < 200 MeV for charged
- also depends on large database (ENDF)
- alternative dbs ready: TENDL, IAEA medical, IBANDL
- recently merged with NeutronHP
- Code currently available
- good comparisons so far with MCNP

Geant4 Neutron Data Library (G4NDL)

- Contains the data files for the high precision neutron models
- includes both cross sections and final states
- From Geant4 9.5 onward, G4NDL is based solely on the ENDF/B-VII database
- G4NDL data is now taken only from ENDF/B-VII, but still has G4NDL format
- use G4NDL 4.0 or later
- Prior to G4 9.5 G4NDL selected data from 9 different databases, each with its own format
- Brond-2.1, CENDL2.2, EFF-3, ENDF/B-VI, FENDL/E2.0, JEF2.2, JENDL-FF, JENDL-3 and MENDL-2
- G4NDL also had its own (undocumented) format

G4ParticleHPElastic

- Handles elastic scattering of $n, p, d, t,{ }^{3} \mathrm{He}, \alpha$ by sampling differential cross section data
- interpolates between points in the cross section tables as a function of energy
- also interpolates between Legendre polynomial coefficients to get the angular distribution as a function of energy
- scattered particle and recoil nucleus generated as final state
- Note that because look-up tables are based on binned data, there will always be a small energy non-conservation
- true for inelastic, capture and fission processes as well

G4ParticleHPInelastic

- Currently supports many inelastic final states + n gamma (discrete and continuum)
- $n(A, Z)$-> (A-1, Z-1) n p
- $n(A, Z)->(A-3, Z) n n n n$
- $n(A, Z)$-> (A-4, Z-2) dt
-
- Secondary distribution probabilities
- isotropic emission
- discrete two-body kinematics
- N-body phase space
- continuum energy-angle distributions (in lab and CM)

Neutron Inelastic: ${ }^{154} \mathrm{Gd}(\mathrm{n}, 2 \mathrm{n})$ Comparison to Data

LEND - the new Livermore Neutron Models

- An alternative to the HP models
- better code design
- faster
- Livermore database not yet as extensive G4NDL
- Corresponding model for each model in HP
- elastic, inelastic, capture, fission
- Invocation in physics list:
- use model names G4LENDElastic, G4LENDInelastic, G4LENDCapture, G4LENDFission, and cross sections G4LENDElasticCrossSection, G4LENDInelasticCrossSection, G4LENDCaptureCrossSection, G4LENDFissionCrossSection
- Database to use: go to ftp://gdo-nuclear.ucllnl.org/pub/ and select G4LEND, then ENDF-B-VII.O.tar.gz

Ion-Ion Inelastic Scattering

- Up to now we've considered only hadron-nucleus interactions, but Geant4 has six different nucleus-nucleus collision models
- G4BinaryLightlon
- G4WilsonAbrasion/G4WilsonAblation
- G4EMDissociationModel
- G4QMD
- G4Incl
- FTF
- Also provided are several ion-ion cross section data sets
- Currently no ion-ion elastic scattering models provided

G4BinaryLightlonReaction

- This model is an extension of the G4BinaryCascade model (to be discussed later)
- The hadron-nuclear interaction part is identical, but the nucleus-nucleus part involves:
- preparation of two 3D nuclei with Woods-Saxon or harmonic oscillator potentials
- lighter nucleus is always assumed to be the projectile
- nucleons in the projectile are entered with their positions and momenta into the initial collision state
- nucleons are interacted one-by-one with the target nucleus, using the original Binary cascade model

G4WilsonAbrasion and G4WilsonAblation

- A simplified macroscopic model of nucleus-nucleus collisions
- based largely on geometric arguments
- faster than Binary cascade or QMD models, but less detailed
- The two models are used together
- G4WilsonAbrasion handles the initial collision in which a chunk of the target nucleus is gouged out by the projectile nucleus
- G4WilsonAblation handles the de-excitation of the resulting fragments
- Based on the NUCFRG2 model (NASA TP 3533)
- Can be used up to $10 \mathrm{GeV} / \mathrm{n}$

Wilson Abrasion/Ablation

G4EMDissociation Model

- Electromagnetic dissociation is the liberation of nucleons or nuclear fragments as a result of strong EM fields
- as when two high-Z nuclei approach
- exchange of virtual photons instead of nuclear force
- Useful for relativistic nucleus-nucleus collisions where the Z of the nucleus is large
- Model and cross sections are an implementation of the NUCFRG2 model (NASA TP 3533)
- Can be used up to 100 TeV

INCL Nucleus-Nucleus

-INCL hadron-nucleus model used to interact projectile nucleons with target
-True potential is not used for projectile nucleus, but binding energy is taken into account - True potential is used for target

- Projectile nucleons can pass through to form fragment or interact with nucleus

G4QMD Model

- BinaryLightlonReaction has some limitations
- neglects participant-participant scattering
- uses simple time-independent nuclear potential
- imposes small A limitation for target or projectile
- Binary cascade base model can only go to 5-10 GeV
- Solution is QMD (quantum molecular dynamics) model
- an extension of the classical molecular dynamics model
- treats each nucleon as a gaussian wave packet
- propagation with scattering which takes Pauli principal into account
- can be used for high energy, high Z collisions

QMD Validation Ar40 560MeV/n on Lead

+ Data
+ G4BinaryCascade
+ G4QMD

180MeV Proton on Al

Fragment $A=7$

Nucleus-nucleus Cross Sections

- Cross section data sets available from $10 \mathrm{MeV} / \mathrm{N}$ to $10 \mathrm{GeV} / \mathrm{N}$
- Tripathi, TripathiLight (for light nuclei)
- Kox
- Shen
- Sihver
- These are empirical and parameterized cross section formulae with some theoretical insight
- G4GeneralSpaceNNCrossSection was prepared to assist users in selecting the appropriate cross section formula

Nucleus-nucleus Cross Sections

- G4ComponentGGNuclNuclXsc
- total, inelastic and elastic nucleus-nucleus cross sections using Glauber model with Gribov corrections
- G4ComponentAntiNuclNucleusXS
- total, inelastic and elastic cross sections for anti-nucleon and anti-nucleus nucleus scattering

Capture and Stopping Models

Capture
Stopping

Stopped Hadron Models

- G4PiMinusAbsorptionBertini, G4KaonMinusAbsorptionBertini, G4SigmaMinusAbsorptionBertini
- at rest process implemented with Bertini cascade model
- G4Precompound model used for de-excitation of nucleus
- includes atomic cascade but not decay in orbit
- G4AntiProtonAbsorptionFritiof, G4AntiSigmaPlusAbsorptionFritiof
- FTF model used because $>2 \mathrm{GeV}$ available in reaction
- G4Precompound model used for de-excitation of nucleus
- includes atomic cascade but not decay in orbit

Stopped Muon Models

- G4MuonMinusCapture
- atomic cascade, with decay in orbit enabled
- K-shell capture and nuclear de-excitation implemented with Bertini cascade model
- used in most physics lists
- G4MuonMinusCaptureAtRest
- atomic cascade, with decay in orbit enabled
- K-shell capture uses simple particle-hole model
- nuclear de-excitation handled by G4ExcitationHandler

Muon Capture using Bertini Model (red), old model (black)

Neutron KE from mu- Ca

Neutron KE from mu-S

Neutron KE from mu- Si

Capture Models

- Neutrons, anti-neutrons never really stop, they just slow down from elastic scattering or are absorbed
- kinetic energy must be taken into account
- G4HadronCaptureProcess
- in-flight capture for neutrons
- model implementations:
- G4ParticleHPCapture (below 20 MeV)
- G4NeutronRadCapture (all energies)
- G4AntiNeutronAnnihilationAtRest
- implemented by GHEISHA parameterized model

Fission Processes and Models

- Many hadronic models already include fission implicitly
- included in nuclear de-excitation code
- in that case don't add fission process to physics list -> double counting
- usually only needed in special cases
- G4HadronFissionProcess can use two models
- G4ParticleHPFission
- specifically for neutrons below 20 MeV
- fission fragments produced if desired
- G4FissLib: Livermore Spontaneous Fission
- handles spontaneous fission as an inelastic process
- no fission fragments produced, just neutron spectra

Fission Processes and Models

- Fission fragments can be produced with Wendt fission model
- automatically available when ParticleHPFission is used
- invoke by setting two environment variables:
- G4NEUTRONHP_PRODUCE_FISSION_FRAGMENTS
- G4NEUTRON_HP_USE_WENDT_FISSION_MODEL
- see extended example geant4/examples/extended/hadronic/FissionFragment
- Model developed by Geant4 user who needed fission fragments in addition to emitted neutrons for reactor studies
- worked with Geant4 developer and contributed code

Summary (1)

- All hadron elastic scattering is handled by one process
- but implemented by several models depending on energy and particle type
- Specialized high precision models ($\mathrm{n}, \mathrm{p}, \mathrm{d}, \mathrm{t},{ }^{3} \mathrm{He}, \alpha$)
- HP models which use G4NDL, now based entirely on ENDF/B-VII
- alternative LEND (Livermore) models are faster but currently less extensive - use the ENDF.B-VII library
- Several models for nucleus-nucleus collisions
- Wilson models fast, but not so detailed
- Cascade models more detailed but slower
- QMD model very detailed but not so fast

Summary (2)

- Capture, stopping processes for selected particle types
- Several fission models available
- some implicitly included in other models
- some must be explicitly added by users
- make sure not to double-count !

