
ANALYSIS

1

Mihaly Novak
 
based on material kindly provided by 
 I. Hrivnacova (CNRS) and A. Dotti (SLAC)

Lund University, Lund – September 3-7, 2018

Geant4 release 10.4 + P02

Contents

Introduction on analysis

Histograms

Ntuples

UI Commands for analysis

2

Introduction3

Introduction
4

Geant4 does not provide a complete analysis sub-
system
! Our user community is too heterogeneous
! Each user group has its own requirements and a favorite

tool
■ e.g. ROOT in HEP, what is yours ?

Typical simulation output consists of
! n-tuple like tables (row: event, column: quantity)
! histograms

Status of g4analysis
5

Analysis category in Geant4 since December 2011
! Before the analysis code in Geant4 examples used external tools (based on AIDA = Abstract Interfaces

for Data Analysis) that had to be linked with Geant4 to produce histograms or ntuples

Area of new developments and improvements: more features are added in each release
! Example: better MPI (Message Passing Interface) support

Based on g4tools from inlib/exlib developed by G. Barrand (LAL, France)
! http://inexlib.lal.in2p3.fr
! “Pure header code” - all code is inlined : can be installed on iOS, Android, UNIXes, Windows...

Provides unique interface to write histograms and “flat n-tuples” (i.e. with primitive types)
in several formats:  
ROOT, XML AIDA, CSV, HBOOK

http://inexlib.lal.in2p3.fr

Status of g4analysis
6

It includes a manager G4AnalysisManager (singleton):
! Handles output file(s) creation
! Owns and handles histograms and n-tuples
It provides
! Uniform interface

■ Hides the differences according to a selected technology (root, XML, HBOOK,
CSV) from the user

! Higher level management of g4tools objects (file, histograms, n-tuples)
■ Memory management
■ Access to histograms, n-tuple columns via indexes

Integration in the Geant4 framework
! Interactive commands, units
It is thread-safe and provides automatic merging of histograms

Histograms7

Using Geant4 Analysis
8

3 basic steps
1. - Create/get the G4AnalysisManager
 - Book (create) your histograms, n-tuples
 - Open a file
2. Fill values in histograms, n-tuples
3. Write & close file

Using Geant4 Analysis
9

The few basic steps in detail…
1. Create G4AnalysisManager in RunAction::BeginOfRunAction()
 Open an output file in RunAction::BeginOfRunAction()
 Book (create) your histograms, n-tuples in RunAction::BeginOfRunAction()

2. Fill values in histograms, n-tuples anywhere during event  
 processing,  
 e.g. in EventAction::EndOfEventAction()

3. Write & close file in RunAction::EndOfRunAction()

Note: performing the steps in the suggested classes & methods is not
mandatory, but it guarantees correct functioning in multi-threaded mode

Selection of output type
10

For simplicity of use, G4AnalysisManager provides a complete access to all
interfaced methods for all output formats: ROOT, CSV, AIDA XML
! though it is implemented via a more complex design
! the real type is different for each output type:  

G4RootAnalysisManager, G4CsvAnalysisManager, G4XmlAnalysisManager
The generic types are defined in dedicated header files for each output type:
! g4root.hh, g4csv.hh, g4xml.hh
! using namespaces and typedefs

It is recommended to add the selected include in an extra header file
MyAnalysis.hh and include this header file in all classes which use g4analysis
Changing the format requires only one line change in this MyAnalysis.hh header

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4csv.hh"
//#include "g4xml.hh"
#endif

MyAnalysis.hh

1) Step 1: creation
11

MyRunAction.cc

#include "MyAnalysis.hh"
 
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Create/get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
 analysisManager->SetVerboseLevel(1);

 // Open an output file
 analysisManager->OpenFile("MyApplication");
  
 // Create histograms
 analysisManager!CreateH1("Edep","Energy deposit", 100, 0., 800*MeV);
 analysisManager!CreateH1("Tlen","Track length", 100, 0., 100*mm);
}

2) Step 2: filling
12

Example of filling 2 one-dimensional histograms

#include "MyAnalysis.hh"

void MyEventAction::EndOfEventAction(const G4Event* event)
{
 // Get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

 // Fill histograms
 analysisManager!FillH1(0, fEdep);
 analysisManager!FillH1(1, fTrackLength);
}

MyEventAction.cc

3) Step 3: write & close
13

Example of writing & closing the output file

#include "MyAnalysis.hh"

void MyRunAction::EndOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

 // Write and close the output file
 analysisManager->Write();
 analysisManager->CloseFile();
}

MyRunAction.cc

More on histograms
14

1D, 2D, 3D histograms and 1D, 2D profile histograms available

Histogram identifiers
! The histogram ID is automatically generated (when a histogram is created by

G4AnalysisManager::CreateH1()), and its value is returned from this function
■ Note: the histogram names have no relation to the histogram ID which is used at filling

! The default start value 0 can be changed (eg. to 1) with:
G4AnalysisManager::SetFirstHistoId(G4int)
■ The 1D, 2D and 3D histograms IDs are defined independently

Histogram objects
! It is also possible to access directly a histogram by  

G4AnalysisManager::GetH1(G4int id)  
The concrete histogram type is hidden behind a selected namespace (e.g. root, csv,…)

G4cout << "Print histograms statistic \n" << G4endl;
G4cout << " EAbs : mean = " << analysisManager->GetH1(1)->mean()
 << " rms = " << analysisManager->GetH1(1)->rms() << G4endl;

Histogram options
15

Properties, additional to those defined in g4tools, can be added to
histograms via G4AnalysisManager
! Unit : if defined, all filled values are automatically converted to this

defined unit
! Function : if defined, the function is automatically executed on the filled

values (can be log, log10, exp)
■ When a histogram is defined with both unit and function, then the unit is applied

first
! Binning scheme : users can define a non-equidistant binning scheme

(passing a vector of bin edges)
■ UI command only for lin/log scheme

! ASCII option : if activated the histogram is also printed in an ASCII file
when G4AnalysisManager::Write() function is called

! See /analysis/h1/set UI commands

Ntuples16

1) Step 1: creation
17

Example of creating an n-tuple

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Create analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
 analysisManager->SetVerboseLevel(1);

 // Open an output file
 analysisManager->OpenFile("MyApplication");

 // Creation of ntuple
 analysisManager->CreateNtuple("MyNtuple", "Edep and TrackLength");
 analysisManager->CreateNtupleDColumn("Eabs");
 analysisManager->CreateNtupleDColumn("Labs");
 analysisManager->FinishNtuple();
}

MyRunAction.cc

2) Step 2: filling
18

Example of filling an ntuple

MyEventAction.cc

void MyEventAction::EndOfEventAction(const G4Event* event)
{
 // Get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

 // Fill ntuple
 analysisManager->FillNtupleDColumn(0, fEnergyAbs);
 analysisManager->FillNtupleDColumn(1, fTrackLAbs);
 analysisManager->AddNtupleRow();
}

3) Step 3: write & close
19

Example of writing & closing the output file

#include "MyAnalysis.hh"

void MyRunAction::EndOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

 // Write and close the output file
 analysisManager->Write();
 analysisManager->CloseFile();
}

MyRunAction.cc

More on ntuples
20

N-tuple and N-tuple Column identifiers
! Automatically generated when the n-tuple or n-tuple column is created by

G4AnalysisManager::CreateNtuple() or
G4AnalysisManager::CreateNtupleTColumn()  
and its value is returned from this function.

! The default start value 0 can be changed with the
G4AnalysisManager::SetFirstNtupleId(G4int) and
G4AnalysisManager::SetFirstNtupleColumnId(G4int) methods.

! In a similar way as for histogram ID

The n-tuple column ID is not specific to the column type: available
column types:
! integer (I), float (F), double (D), string (S)
! std::vector of integer (I), float (F), double (D) types

UI commands21

Analysis UI commands (1/3):  
options and output file handling

22

General options

Handling output files and general options

Set verbose level
/analysis/verbose level
Set activation option
/analysis/setActivation true|false

Set name for the histograms and n-tuple file
/analysis/setFileName name
Set name for the histograms/n-tuple directory
/analysis/setHistoDirName name
/analysis/setNtupleDirName name

Commands to create or define 1D histogram

Example of a macro gammaSpectrum.mac in TestEm5 example
(examples/extended/electromagnetic/TestEm5/gammaSpectrum.mac)

Analogous commands are available for 2D and 3D histograms  
and 1D and 2D profiles

UI commands (2/3)
23

Create 1D histogram
/analysis/h1/create name title [nbin min max] [unit] [fcn] [binscheme]

Set histogram parameters from UI command
/analysis/h1/set id nbin min max [unit] [fcn] [binscheme]

/analysis/setFileName gammaSpectrum
/analysis/h1/set 3 200 0.01 10 MeV #gamma: energy at vertex
/analysis/h1/set 5 200 0.01 10 MeV log10 #gamma: energy at vertex (log10)
/analysis/h1/set 20 200 0 6 MeV #gamma: energy at exit
/analysis/h1/set 40 200 0 6 MeV #gamma: energy at back

UI commands (3/3)
24

For 1D histograms control

The same sets of commands are available for 2D and 3D
histograms and 1D and 2D profiles, under h2, h3, p1 and
p2 directories

Activate printing 1D histogram on ASCII file
/analysis/h1/setAscii id true|false
Set title for the 1D histogram
/analysis/h1/setTitle id title
Set x-axis, y-axis title for the 1D histogram
/analysis/h1/setXaxis id title
/analysis/h1/setYaxis id title
Set activation for the id 1D histogram
/analysis/h1/setActivation id true|false
Set activation to all 1D histograms
/analysis/h1/setActivationToAll true|false

More: batch graphics (1/3)
25

Since Version 10.2
Users can activate plotting of selected histograms and
profiles using G4AnalysisManager methods

Or via UI command

The selected objects will be plotted in a single postscript
(.ps) file with the page size fixed to A4 format

// Activate plotting of 1D histogram
analysisManager->SetH1Plotting(id, true);
// etc for H2, H3, P1, P2

/analysis/h1/setPlotting id true|false
/analysis/h1/setPlottingToAll true|false
etc for h2, h3, p1, p2

More: output files (2/3)
26

Depending on selected file format, multiple output files can be
produced

ROOT
! All histograms, profiles and n-tuples are written in one file
XML (AIDA)
! The histograms and profiles are written in one file, and each n-tuple is

written in a separate file

CSV (comma-separated values)
! Each histogram, profile and n-tuple are written in a separate file

 
File names are generated automatically  
 fileName[_objectName].ext where ext = xml, csv

ROOT
27

A powerful analysis tool from CERN

Start session with root, then open a browser with:
 root [0] new TBrowser

https://root.cern.ch

File generated
In Geant4
simulation

Selected H1
is automatically
drawn in the

canvas

Geant4 examples
28

In examples/extended/analysis, 3 examples to demonstrate how to
make histograms and ntuples

! AnaEx01 – use of Geant4 analysis tools
! AnaEx02 – use of ROOT classes, requires linking with Root libraries
! AnaEx03 – use of AIDA interface classes, requires linking with an AIDA

compliant tool, eg. OpenScientist

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/
examples_doc/html/Examples_analysis.html

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/ht%20ml/Examples_analysis.html

Summary
29

Geant4 provides a lightweight analysis tool as part of distribution
Can handle histograms (1D, 2D, profiles) and ntuples
Variety of UI commands
Variety of output formats
Compatible with MT
! Histogram and ntuple merging
The Geant4 analysis is now used in all basic, extended and most of
advanced examples
Users can also choose to use an external package and link their
application against its libraries

