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Historical review of 
Monte Carlo method



Monte Carlo method
• A technique of numerical analysis that uses random sampling to 

simulate the real-world phenomena
• Applications:

– Particle physics
– Quantum field theory
– Astrophysics
– Molecular modeling
– Semiconductor devices
– Light transport calculations
– Traffic flow simulations
– Environmental sciences
– Financial market simulations
– Optimization problems
– ...

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 4



Monte Carlo method : definition
• The Monte Carlo method is a stochastic method for numerical 

integration.
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Buffon’s Needle
• One of the oldest problems in the field of geometrical 

probability, first stated in 1777. 

• Drop a needle on a lined sheet of paper and determine 
the probability of the needle crossing one of the lines

• Remarkable result: probability is directly related to the 
value of p

• The needle will cross the line if x ≤ L sin(θ). Assuming L ≤ 
D, how often will this occur?

• By sampling Pcut one can estimate p.
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Laplace’s method of calculating p (1886)

• Area of the square = 4

• Area of the circle = p
• Probability of random points 

inside the circle = p / 4

• Random points : N
• Random points inside circle : Nc

p ~ 4 Nc / N
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Monte Carlo methods for radiation transport

• Fermi (1930): random method to calculate the properties of the 
newly discovered neutron

• Manhattan project (40’s): simulations during the initial 
development of thermonuclear weapons. von Neumann and 
Ulam coined the term “Monte Carlo”

• Metropolis (1948) first actual Monte Carlo calculations using a 
computer (ENIAC) 

• Berger (1963): first complete coupled electron-photon transport 
code that became known as ETRAN

• Exponential growth since the 1980’s with the availability of digital 
computers

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 8



Basics of Monte Carlo method



Probability Density Function (PDF) - 1

• Variable is random (also called stochastic) if its value cannot be 

specified in advance of observing it

– let x be a single continuous random variable defined over some 
interval.  Interval can be finite or infinite.

• Value of x for any observation cannot be specified in advance, but it is 

possible to talk in terms of probabilities

– Prob{xi ≤ X} represents the probability that an observed value xi will 

be less than or equal to some specified value X.   More generally, 
Prob{E} is used to represent the probability of an event E

• Probability Density Function (PDF) of a single stochastic variable is a 

function that has three properties: 

1) defined on an interval [a, b]

2) is non-negative on that interval

3) is normalized such that                         with a and b real numbers,     
a → −∞ and/or b → ∞
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Probability Density Function (PDF) - 2

• A PDF f (x) is a density function, i.e., it specifies the probability per unit of x, 
so that f (x) has units that are the inverse of the units of x

• For given x,  f (x) is not the probability of obtaining x
– infinitely many values that x can assume
– probability of obtaining a single specific value is zero

• Rather,  f (x)dx is the probability that a random sample xi will assume a value 
within x and x+dx
– often, this is stated in the form

f (x) = Prob{ x < xi < x+dx }
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Cumulative Distribution Function (CDF)
• The integral defined by

where f (x) is a PDF over the interval [a, b], is called the Cumulative 
Distribution Function (CDF) of f. 

• A CDF has the following properties:
1) F(a) = 0., F(b) = 1.
2) F(x) is monotonically increasing, as f(x) is always non-negative

• CDF is a direct measure of probability. The value F(xi) represents the 
probability that a random sample of the stochastic variable x will assume a 
value between a and xi, i.e., Prob{a ≤ x ≤ xi} = F(xi). 

• More generally,
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Some example distributions – Uniform PDF
• The uniform (rectangular) PDF on the interval [a, b] and its CDF are given by
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Some example distributions – Exponential PDF
• The exponential PDF on the interval [0, ∞] and its CDF are given by
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Acceptance-rejection method
• If xi and yi are selected randomly from the range 

and domain, respectively, of the function f, 
then each pair of numbers represents a point in 
the function’s coordinate plane (x, y)

• When yi > f(xi) the point lies above the curve for 
f(x), and xi is rejected; when yi ≤ f(xi) the points 
lies on or below the curve, and xi is accepted

• Thus, fraction of accepted points is equal to 
fraction of the area below curve

• This technique, first proposed by von Neumann, 
is also known as the acceptance-rejection 
method of generating random numbers for 
arbitrary Probability Density Function (PDF)
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Mean, variance and standard deviation

16

1

• Two important measures of PDF f(x) are its mean µ and variance s2.
• The mean µ is the expected or averaged value of x defined as

• The variance s2 describes the spread of the random variable x from the mean 
and defined as

Note: 
• The square root of the variance is called the standard deviation σ.
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Mean, variance and standard deviation
• Consider a function z(x), where x is a random variable described by a PDF f (x).
• The function z(x) itself is a random variable. Thus, the expected or mean value 

of z(x) is defined as such.

• Then, variance of z(x) is given as this.

• The heart of a Monte Carlo analysis is to obtain an estimate of a mean value 
(a.k.a. expected value). If one forms the estimate

where xi are suitably sampled from PDF f (x), one can expect
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Confidence coefficient and confidence level
• The equation of the previous page can be written as

where s(z) is the calculated sample standard deviation. 
• Right-hand side can be evaluated numerically and called the confidence 

coefficient. The confidence coefficients expressed as percentages are called 
confidence level. For a given l in unit of standard deviation, the Monte Carlo 
estimate of <z> is usually reported as 
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l confidence coefficient confidence level

0.25 0.1974 20%

0.50 0.3829 38%

1.00 0.6827 68%

1.50 0.8664 87%

2.00 0.9545 95%

3.00 0.9973 99%

4.00 0.9999 99.99%



Two Monte Carlo Particle Transport Examples



Simplest case – decay in flight (1)
• Suppose an unstable particle of life time t has initial momentum p

(à velocity v ).

– Distance to travel before decay : d = t v
• The decay time t is a random value with probability density function

• the probability that the particle decays at time t is given by the cumulative distribution 
function F which is itself is a random variable with uniform probability on [0,1]

• Thus, having a uniformly distributed random number r on [0,1], one can sample the value t
with the probability density function f(t).
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t = F-1( r ) = -t ln( 1 – r )  0 < r < 1



Simplest case – decay in flight (2)
• When the particle has traveled the d = t v, it decays.
• Decay of an unstable particle itself is a random process à Branching ratio

– For example:
p+ à µ+ nµ (99.9877 %)
p+ à µ+ nµ g   (2.00 x 10-4 %)
p+ à e+ ne (1.23 x 10-4 %)
p+ à e+ ne g (7.39 x 10-7 %)
p+ à e+ ne p0 (1.036 x 10-8 %)
p+ à e+ ne e+ e- (3.2 x 10-9 %)

• Select a decay channel by shooting a random number
• In the rest frame of the parent particle, rotate decay products 

in q [0,p) and f [0,2p) by shooting a pair of random numbers

• Finally, Lorentz-boost the decay products
• You need at least 4 random numbers to simulate one decay 

in flight
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dW = sinq dq df

q = cos-1(r1),   f = 2p x r2        0 < r1, r2 < 1



Evenly distributed points on a sphere
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q = cos-1(r1), f = 2p x r2        
0 < r1, r2 < 1

q = p x r1, f = 2p x r2       
0 < r1, r2 < 1

dW = sinq dq df



Compton scattering (1)
• Compton scattering

e- gà e- g
• Distance traveled before Compton scattering, l, is a

random value
Cross section per atom : s(E,z)
Number of atoms per volume : n = r NA / A

r : density, NA : Avogadro number, A : atomic mass
Cross section per volume : h(E, r) = n s

• h is the probability of Compton interaction per unit length. l(E, r) =  h-1 is the mean free 
path associated with the Compton scattering process.

• The probability density function f(l)

• With a uniformly distributing random number r on [0,1), One can sample the distance l. 
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f

l = -l ln( r )  0 < r < 1



Compton scattering (2)
• l(E, r) and l are material dependent. Distance measured by the unit of mean 

free path (nl) is independent.

• nl is independent of the material and a random value with probability density 
function f( nl ) = exp( -nl )
– sample nl at the origin of the particle 

– update elapsed nl along the passage of the particle

– Compton scattering happens at nl = 0
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l1 l2 l3

l1 l2 l3

nl = -ln( r )  0 < r < 1

nl = nl - li / li



Compton scattering (3)
• The relation between photon deflection (q) and energy loss for Compton scattering is 

determined by the conservation of momentum and energy between the photon and 
recoiled electron.

• For unpolarized photon, the Klein-Nishina angular distribution function per steradian of 
solid angle W

• One can use acceptance-rejection method to sample
the distribution.
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f
hn : energy of incident photon
hn0 : energy of scattered photon
E : energy of recoil electron
me : rest mass of electron
c : speed of light 



Boosting simulation 

- Variance reduction techniques



Buffon’s needle – once again
• Suppose the distance between lines (D) is much larger than the length of the 

needle (L). In naïve simulation, the needle’s location (x) is sampled uniformly 
over [0,D). 

p ~ (2 L / D) * ( h / n )
• However, the needle has little chance to hit lines for L < x < D – L. Also, 

symmetry shows the probability of hitting lines for [0,D/2) is equal to [D/2,D). 
• One can estimate p by sampling x over [0,L], and because the probability of 

0 < x < L is L/(D/2), each successful count should be multiplied by the weight 
D/2L .

p ~ (2 L / D) * ( h* (D / 2 L) / n ) 
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Variance reduction techniques
• There are simulation problems where the event we are interested in is very 

rare due to physics and/or geometry.
• Over the years, many clever variance reduction techniques have been 

developed for performing biased Monte Carlo calculations
• The introduction of variance reduction methods into Monte Carlo calculations 

can make otherwise impossible Monte Carlo problems solvable. However, use 
of these variance reduction techniques requires skill and experience. 
– non-analog Monte Carlo, despite having a rigorous statistical basis, is, in 

many ways, an “art” form and cannot be used blindly.

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 28



Example use-cases of variance reduction
• Efficiency of a radiation shielding

– E.g. large flux entering to a thick shield
– Lots of interactions : compute intensive
– Very few particles escape

• Response of thin detector
– e.g. compact neutron detector
– most particles pass through without interaction
– signal is made by the interaction

• Dose in a very small component in a large setup
– e.g. an IC chip in a large satellite in cosmic 

radiation environment
– most of the incident radiation does not reach

the IC chip
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Non-exhaustive list of Monte Carlo codes
• EM physics
– ETRAN (Berger & Seltzer; NIST)
– EGS4 (Nelson, Hirayama, Rogers; SLAC)
– EGS5 (Hirayama et al.; KEK/SLAC)
– EGSnrc (Kawrakow & Rogers; NRCC)
– Penelope (Salvat et al.; U. Barcelona)

• Hadronic physics / general purpose

– Fluka (Ferrari et al., CERN/INFN)
– Geant4 (Geant4 Collaboration)
– MARS (James & Mokhov; FNAL)
– MCNPX / MCNP5 (LANL)
– PHITS (Niita et al.; JAEA)
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Backup 



The Central Limit Theorem
• One of the important features of Monte Carlo is that not only can one obtain 

an estimate of an expected value but also one can obtain an estimate of the 
uncertainty in the estimate.

• The Central Limit Theorem (CLT) is a very general and powerful theorem. 

• For     obtained by samples from a distribution with mean <z> and standard 
deviation σ(z), CLT provides

• Stated in words:

The CLT tells us that the asymptotic distribution of                      is a unit 

normal distribution or, equivalently,       is asymptotically distributed as a 
normal distribution with mean μ = <z> and standard deviation                    .

• Most importantly, it states that the uncertainty in the estimated expected 
value is proportional to               where N is the number of samples of f (x).

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 32



Buffon’s needle – case of D / L = 10,000
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Analogue simulation / non-analogue simulation
• The real power of Monte Carlo is that the sampling procedure can be 

intentionally biased toward the region where the integrand is large or to 
produce simulated histories that have a better chance of creating a rare event, 
such as Buffon’s needle falling on widely spaced lines. 
– “Analogue simulation” : follows the natural PDF 
– “Non-analogue (a.k.a. biased) simulation” : biased sampling

• Of course, with such biasing, the scoring then must be corrected by assigning 
weights to each history in order to produce a corrected, unbiased estimate of 
the expected value. 

• In such non-analog Monte Carlo analyses, the sample variance s2(z) of the 
estimated expectation value z is reduced compared to that obtained by an 
unbiased or analog analysis. 
– In the Buffon’s needle example, biasing a simulation problem with widely 

spaced lines to force all dropped needles to have one end within a needle’s 
length of a grid line was seen to reduce the relative error by two orders of 
magnitude over that of a purely analog simulation.
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Mean, variance and standard deviation
• Consider a function z(x), where x is a random variable described by a PDF f (x).
• The function z(x) itself is a random variable. Thus, the expected or mean value 

of z(x) is defined as such.

• Then, variance of z(x) is given as such.

• The heart of a Monte Carlo analysis is to obtain an estimate of a mean value 
(a.k.a. expected value). If one forms the estimate

where xi are suitably sampled from PDF f (x), one can expect
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Variance reduction techniques
• The aim of Monte Carlo calculation is to seek an estimate      to an expected 

value       . The goal of variance reduction technique is to produce a more 
precise estimate than could be obtained in a purely analogue calculation with 
the same computational effort.  

• Because both      and     must always be positive, the sample variance s2 can be 
reduced by reducing their difference. 

• Thus, the various variance reduction techniques are directed, ultimately, to 
minimizing the quantity      −   . 
– Note that, in principle, it is possible to attain zero variance, if     =      , which 

occurs if every history yields the sample mean. But this is not very likely. 
However, it is possible to reduce substantially the variance among histories 
by introducing various biases into a Monte Carlo calculation.
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Some example distributions – Gaussian PDF
• The Gaussian PDF on the interval [-∞, ∞] and its CDF are given by
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Geant4 Biasing 38

• In an importance sampling technique, the analog PDF is
replaced by a biased PDF:

• The weight for a given value x, is the ratio of the analog over the 
biased distribution values at x.

Importance Sampling

x

analog
pdf(x)

biased
pdf(x)

x

Phase space
region of interest

analog-pdf(x)
w(x) = ------------------

biased-pdf(x)



Weight window
• Monitor the weight of each particle
• If the weight becomes too high:

– it makes too large a contribution to the estimate and slows the 
convergence à make two particles with half the weight

• If the weight becomes too low:
– it does not contribute much to the estimate and thus wastes CPU à kill

the particle with 50% probability, the rest of the time double its weight
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Figure of Merit

(T : time spent for the simulation)
usually constant except for very small statistics
Good measure of the efficiency of Monte Carlo method
(the higher FOM is the better)

- In the Buffon’s needle case, FOM for z << 1 is 1000 
times better than FOM for z > 1.

Accuracy, precision, relative error and figure of merit 
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Accuracy
(a.k.a. systematic error) 
measure of how close is 
the expected <x> to the 
true value, which is 
seldom known. 

Precision

uncertainty of Monte 
Carlo estimate. It is 
possible to get a highly 
precise result that is far 
from the true value, if the 
model is not faithful.Relative error

measure of calculation 
(statistical) precision. 

R > 0.5 : not trustable 
0.1 < R < 0.5 : questionable
R < 0.1 : reasonable


