
Version 10.4-p02

Scoring I

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

•  Retrieving information from Geant4
•  Command-based scoring

•  Add a new scorer/filter

Scoring I - M.Asai (SLAC) 2

Version 10.4-p02

Retrieving information from Geant4

Extract useful information

•  Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.
–  You have to do something to extract information useful to you.

•  There are three ways:
–  Built-in scoring commands

•  Most commonly-used physics quantities are available.
–  Use scorers in the tracking volume

•  Create scores for each event
•  Create own Run class to accumulate scores

–  Assign G4VSensitiveDetector to a volume to generate “hit”.
•  Use user hooks (G4UserEventAction, G4UserRunAction) to get event /

run summary
•  You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,

etc.)
–  You have full access to almost all information
–  Straight-forward, but do-it-yourself

Scoring I - M.Asai (SLAC) 4

This talk

Version 10.4-p02

Command-based scoring

Command-based scoring

•  Command-based scoring functionality offers the built-in scoring mesh and various
scorers for commonly-used physics quantities such as dose, flux, etc.
–  Due to small performance overhead, it does not come by default.

•  To use this functionality, access to the G4ScoringManager pointer after the
instantiation of G4(MT)RunManager in your main().

#include “G4ScoringManager.hh”
int main()
{
 G4RunManager* runManager = new G4MTRunManager;
 G4ScoringManager* scoringManager =

 G4ScoringManager::GetScoringManager();
 …

•  All of the UI commands of this functionality are in /score/ directory.
•  /examples/extended/runAndEvent/RE03

Scoring I - M.Asai (SLAC) 6

Command-based scorers

Scoring I - M.Asai (SLAC) 7

Define a scoring mesh
•  To define a scoring mesh, the user has to specify the followings.

1.  Shape and name of the 3D scoring mesh.
•  Currently, box and cylinder are available.

2.  Size of the scoring mesh.
•  Mesh size must be specified as "half width" similar to the arguments of

G4Box / G4Tubs.
3.  Number of bins for each axes.

•  Note that too many bins causes immense memory consumption.
4.  Specify position and rotation of the mesh.

•  If not specified, the mesh is positioned at the center of the world volume
without rotation.

define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30
/score/mesh/translate/xyz 0. 0. 100. cm

•  The mesh geometry can be completely independent to the real material geometry.

Scoring I - M.Asai (SLAC) 8

Scoring quantities
•  A mesh may have arbitrary number of scorers. Each scorer scores one physics

quantity.
–  energyDeposit * Energy deposit scorer.
–  cellCharge * Cell charge scorer.
–  cellFlux * Cell flux scorer.
–  passageCellFlux * Passage cell flux scorer
–  doseDeposit * Dose deposit scorer.
–  nOfStep * Number of step scorer.
–  nOfSecondary * Number of secondary scorer.
–  trackLength * Track length scorer.
–  passageCellCurrent * Passage cell current scorer.
–  passageTrackLength * Passage track length scorer.
–  flatSurfaceCurrent * Flat surface current Scorer.
–  flatSurfaceFlux * Flat surface flux scorer.
–  nOfCollision * Number of collision scorer.
–  population * Population scorer.
–  nOfTrack * Number of track scorer.
–  nOfTerminatedTrack * Number of terminated tracks scorer.

Scoring I - M.Asai (SLAC) 9

/score/quantity/xxxxx <scorer_name> <unit>

List of provided primitive scorers
•  Concrete Primitive Scorers (See Application Developers Guide 4.4.6)

–  Track length
•  G4PSTrackLength, G4PSPassageTrackLength

–  Deposited energy
•  G4PSEnergyDepsit, G4PSDoseDeposit, G4PSChargeDeposit

–  Current/Flux
•  G4PSFlatSurfaceCurrent,

G4PSSphereSurfaceCurrent,G4PSPassageCurrent, G4PSFlatSurfaceFlux,
G4PSCellFlux, G4PSPassageCellFlux

–  Others
•  G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

Scoring I - M.Asai (SLAC) 10

angle

V : Volume

L : Total step length in the cell.

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up 1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical cell.

Filter
•  Each scorer may take a filter.

–  charged * Charged particle filter.
–  neutral * Neutral particle filter.
–  kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>
–  particle * Particle filter.

/score/filter/particle <fname> <p1> … <pn>
–  particleWithKineticEnergy * Particle with kinetic energy filter.

 /score/filter/ParticleWithKineticEnergy
 <fname> <eLow> <eHigh> <unit> <p1> … <pn>

/score/quantity/energyDeposit eDep MeV
/score/quantity/nOfStep nOfStepGamma
/score/filter/particle gammaFilter gamma
/score/quantity/nOfStep nOfStepEMinus
/score/filter/particle eMinusFilter e-
/score/quantity/nOfStep nOfStepEPlus
/score/filter/particle ePlusFilter e+
/score/close

Scoring I - M.Asai (SLAC) 11

Close the mesh when defining scorers is done.

Same primitive scorers
with different filters
may be defined.

Drawing a score

•  Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

•  Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

•  Color map

–  By default, linear and log-scale color maps are available.

–  Minimum and maximum values can be defined by /score/colorMap/

setMinMax command. Otherwise, min and max values are taken from the

current score.

Scoring I - M.Asai (SLAC) 12

Write scores to a file

•  Single score
/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

•  All scores
/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

•  By default, values are written in CSV.
•  By creating a concrete class derived from G4VScoreWriter base class, the user

can define his own file format.
–  Example in /examples/extended/runAndEvent/RE03
–  User’s score writer class should be registered to G4ScoringManager.

Scoring I - M.Asai (SLAC) 13

Energy	spectrum?	

•  One	of	most	frequently	asked	ques7ons	is	“How	to	get	energy	spectrum?”.	
•  Create	arbitrary	number	of	flux	scorers	of	same	kind	combined	with	par7cle	and	kine7c	

energy	filters.	

/score/quantity/flatSurfaceFlux flux0
/score/filter/particleWithKineticEnergy range0 10. 20. MeV e-
/score/quantity/flatSurfaceFlux flux1
/score/filter/particleWithKineticEnergy range1 20. 30. MeV e-	
/score/quantity/flatSurfaceFlux flux2
/score/filter/particleWithKineticEnergy range2 30. 40. MeV e-	
/score/quantity/flatSurfaceFlux flux3
/score/filter/particleWithKineticEnergy range3 40. 50. MeV e-	
	

Scoring I - M.Asai (SLAC) 14

More than one scoring meshes

•  You may define more than one scoring
mesh.
–  And, you may define arbitrary

number of primitive scorers to each
scoring mesh.

•  Mesh volumes may overlap with other
meshes and/or with mass geometry.

•  A step is limited on any boundary.
•  Please be cautious of too many meshes,

too granular meshes and/or too many
primitive scorers.
–  Memory consumption
–  Computing speed

Scoring I - M.Asai (SLAC) 15

Version 10.4-p02

Add a new scorer/filter to command-based scorers

Scorer base class

•  G4VPrimitiveScorer is the abstract base of all scorer classes.
•  To make your own scorer you have to implement at least:

–  Constructor
–  Initialize()

•  Initialize G4THitsMap<G4double> map object
–  ProcessHits()

•  Get the physics quantity you want from G4Step, etc. and fill the map
–  Clear()
–  GetIndex()

•  Convert three copy numbers into an index of the map
•  G4PSEnergyDeposit3D could be a good example.
•  Create your own messenger class to define /score/quantity/<your_quantity>

command.
–  Refer to G4ScorerQuantityMessengerQCmd class.

Scoring I - M.Asai (SLAC) 17

Creating your own scorer
•  Though we provide most commonly-used scorers, you may want to create your own.

–  If you believe your requirement is quite common, just let us know, so that we will add a
new scorer.

•  G4VPrimitiveScorer is the abstract base class.
class G4VPrimitiveScorer
{
 public:
 G4VPrimitiveScorer(G4String name, G4int depth=0);
 virtual ~G4VPrimitiveScorer();
 protected:
 virtual G4bool ProcessHits(G4Step*,
 G4TouchableHistory*) = 0;
 virtual G4int GetIndex(G4Step*);
 public:
 virtual void Initialize(G4HCofThisEvent*);
 virtual void EndOfEvent(G4HCofThisEvent*);
 virtual void clear();

 …
};

•  Methods written in red will be discussed at “Scoring 2” talk.
Scoring I - M.Asai (SLAC) 18

Filter class

•  G4VSDFilter
–  Abstract base class which you can use to make your own filter
class G4VSDFilter
{
 public:
 G4VSDFilter(G4String name);
 virtual ~G4VSDFilter();
 public:
 virtual G4bool Accept(const G4Step*) const = 0;
…

•  Create your own messenger class to define /score/filter/<your_filter> command.
–  Refer to G4ScorerQuantityMessenger class.

Scoring I - M.Asai (SLAC) 19

