
Version 10.4-p02

Geometry II

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

•  Various	ways	of	placement	

–  Simple	placement	volume	

–  Parameterized	volume	

–  Replicated	volume	

–  Divided	volume	

–  Nested	parameteriza;on	

–  Reflected	volume	

–  Assembly	volume	

•  Touchable	

Geometry II - M.Asai (SLAC) 2

Version 10.4-p02

Physical volume

Detector geometry

•  Three conceptual layers
–  G4VSolid -- shape, size

–  G4LogicalVolume -- daughter physical volumes,

 material, sensitivity, user limits, etc.

–  G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 4

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Physical Volumes
•  Placement volume : it is one positioned volume

–  One physical volume object represents one “real” volume.

•  Repeated volume : a volume placed many times

–  One physical volume object represents any number of
“real” volumes.

–  reduces use of memory.

–  Parameterised

•  repetition w.r.t. copy number

–  Replica and Division

•  simple repetition along one axis

•  A mother volume can contain either

–  many placement volumes

–  or, one repeated volume

Geometry II - M.Asai (SLAC) 5

repeated

placement

Physical volume

•  G4PVPlacement 1 Placement = One Placement Volume
–  A volume instance positioned once in its mother volume

•  G4PVParameterised 1 Parameterized = Many Repeated Volumes
–  Parameterized by the copy number

•  Shape, size, material, sensitivity, vis attributes, position and rotation can
be parameterized by the copy number.

•  You have to implement a concrete class of G4VPVParameterisation.
–  Reduction of memory consumption
–  Currently: parameterization can be used only for volumes that either

a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

–  By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

Geometry II - M.Asai (SLAC) 6

Physical volume

•  G4PVReplica 1 Replica = Many Repeated Volumes
–  Daughters of same shape are aligned along one axis
–  Daughters fill the mother completely without gap in between.

•  G4PVDivision 1 Division = Many Repeated Volumes
–  Daughters of same shape are aligned along one axis and fill the mother.
–  There can be gaps between mother wall and outmost daughters.
–  No gap in between daughters.

•  G4ReflectionFactory 1 Placement = a pair of Placement volumes
–  generating placements of a volume and its reflected volume
–  Useful typically for end-cap calorimeter

•  G4AssemblyVolume 1 Placement = a set of Placement volumes
–  Position a group of volumes

Geometry II - M.Asai (SLAC) 7

Version 10.4-p02

Parameterized volume

G4PVParameterised

G4PVParameterised(const G4String& pName,

 G4LogicalVolume* pLogical,

 G4LogicalVolume* pMother,

 const EAxis pAxis,

 const G4int nReplicas,

 G4VPVParameterisation* pParam

 G4bool pSurfChk=false);

•  Replicates the volume nReplicas times using the parameterization
pParam, within the mother volume pMother

•  pAxis is a “suggestion” to the navigator along which Cartesian axis
replication of parameterized volumes dominates.

–  kXAxis, kYAxis, kZAxis : one-dimensional optimization

–  kUndefined : three-dimensional optimization
Geometry II - M.Asai (SLAC) 9

Parameterized Physical Volumes

•  User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number
–  where it is positioned (transformation, rotation)

•  Optional:
–  the size of the solid (dimensions)
–  the type of the solid, material, sensitivity, vis attributes

•  All daughters must be fully contained in the mother.
•  Daughters should not overlap to each other.
•  Limitations:

–  Applies to simple CSG solids only
–  Granddaughter volumes allowed only for special cases
–  Consider parameterised volumes as “leaf” volumes

•  Typical use-cases
–  Complex detectors

•  with large repetition of volumes, regular or irregular
–  Medical applications

•  the material in animal tissue is measured as cubes with varying
material	 Geometry II - M.Asai (SLAC) 10

0
1

2

3

5
6

G4PVParameterized : example

G4VSolid* solidChamber =

 new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

 new G4LogicalVolume

 (solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4VPVParameterisation* chamberParam =

 new ChamberParameterisation();

G4VPhysicalVolume* physChamber =

 new G4PVParameterised("Chamber", logicChamber,

 logicMother, kZAxis, NbOfChambers, chamberParam);

Geometry II - M.Asai (SLAC) 11

G4VPVParameterisation : example
class ChamberParameterisation : public G4VPVParameterisation

{

 public:

 ChamberParameterisation();

 virtual ~ChamberParameterisation();

 virtual void ComputeTransformation // position, rotation

 (const G4int copyNo, G4VPhysicalVolume* physVol) const;

 virtual void ComputeDimensions // size

 (G4Box& trackerLayer, const G4int copyNo,

 const G4VPhysicalVolume* physVol) const;

 virtual G4VSolid* ComputeSolid // shape

 (const G4int copyNo, G4VPhysicalVolume* physVol);

 virtual G4Material* ComputeMaterial // material, sensitivity, visAtt

 (const G4int copyNo, G4VPhysicalVolume* physVol,

 const G4VTouchable *parentTouch=0);

 // G4VTouchable should not be used for ordinary parameterization

};

Geometry II - M.Asai (SLAC) 12

G4VPVParameterisation : example
void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const
{
 G4double Xposition = … // w.r.t. copyNo
 G4ThreeVector origin(Xposition,Yposition,Zposition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
}

void ChamberParameterisation::ComputeDimensions
(G4Box& trackerChamber, const G4int copyNo,
 const G4VPhysicalVolume* physVol) const
{
 G4double XhalfLength = … // w.r.t. copyNo
 trackerChamber.SetXHalfLength(XhalfLength);
 trackerChamber.SetYHalfLength(YhalfLength);
 trackerChamber.SetZHalfLength(ZHalfLength);
}

Geometry II - M.Asai (SLAC) 13

G4VPVParameterisation : example
G4VSolid* ChamberParameterisation::ComputeSolid
 (const G4int copyNo, G4VPhysicalVolume* physVol)
{
 G4VSolid* solid;
 if(copyNo == …) solid = myBox;
 else if(copyNo == …) solid = myTubs;
 …
 return solid;
}

G4Material* ComputeMaterial // material, sensitivity, visAtt
 (const G4int copyNo, G4VPhysicalVolume* physVol,
 const G4VTouchable *parentTouch=0);
{
 G4Material* mat;
 if(copyNo == …)
 {
 mat = material1;
 physVol->GetLogicalVolume()->SetVisAttributes(att1);
 }
 …
 return mat;
}

Geometry II - M.Asai (SLAC) 14

Version 10.4-p02

Replicated volume

Replicated Volumes

•  The mother volume is completely filled with replicas, all of
which are the same size (width) and shape.

•  Replication may occur along:

–  Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

•  Coordinate system at the center of each replica

–  Radial axis (Rho) – cons/tubs sections centered on the
origin and un-rotated

•  Coordinate system same as the mother

–  Phi axis (Phi) – phi sections or wedges, of cons/tubs
form

•  Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

Geometry II - M.Asai (SLAC) 16

a daughter
logical volume to
be replicated

mother volume

G4PVReplica
G4PVReplica(const G4String &pName,

 G4LogicalVolume *pLogical,

 G4LogicalVolume *pMother,

 const EAxis pAxis,

 const G4int nReplicas,

 const G4double width,

 const G4double offset=0.);

•  offset may be used only for tube/cone segment

•  Features and restrictions:

–  Replicas can be placed inside other replicas

–  Normal placement volumes can be placed inside replicas, assuming no
intersection/overlaps with the mother volume or with other replicas

–  No volume can be placed inside a radial replication

–  Parameterised volumes cannot be placed inside a replica

Geometry II - M.Asai (SLAC) 17

Replica - axis, width, offset

•  Cartesian axes - kXaxis, kYaxis, kZaxis

–  Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

–  Offset shall not be used

•  Radial axis - kRaxis

–  Center of n-th daughter is given as

width*(n+0.5)+offset

–  Offset must be the inner radius

of the mother

•  Phi axis - kPhi

–  Center of n-th daughter is given as

width*(n+0.5)+offset

–  Offset must be the starting angle of the mother
Geometry II - M.Asai (SLAC) 18

offset

width

offset

width

width

G4PVReplica : example
G4double tube_dPhi = 2.* M_PI * rad;

G4VSolid* tube =

 new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube_dPhi);

G4LogicalVolume * tube_log =

 new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =

 new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.),

 "tubeP", tube_log, world_phys, false, 0);

G4double divided_tube_dPhi = tube_dPhi/6.;

G4VSolid* div_tube =

 new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm,

 -divided_tube_dPhi/2., divided_tube_dPhi);

G4LogicalVolume* div_tube_log =

 new G4LogicalVolume(div_tube,Pb,"div_tubeL",0,0,0);

G4VPhysicalVolume* div_tube_phys =

 new G4PVReplica("div_tube_phys", div_tube_log,

 tube_log, kPhi, 6, divided_tube_dPhi);
Geometry II - M.Asai (SLAC) 19

Version 10.4-p02

Divided volume

G4PVDivision

•  G4PVDivision is a special kind of G4PVParameterised.

–  G4VPVParameterisation is automatically generated
according to the parameters given in G4PVDivision.

•  G4PVDivision is similar to G4PVReplica but

–  It currently allows gaps in between mother and daughter
volumes

–  We are extending G4PVDivision to allow gaps between
daughters, and also gaps on side walls. We plan to
release this extension in near future.

•  Shape of all daughter volumes must be same shape as the
mother volume.

–  G4VSolid (to be assigned to the daughter logical volume)
must be the same type, but different object.

•  Replication must be aligned along one axis.

•  If your geometry does not have gaps, use G4Replica.

–  For identical geometry, navigation of G4Replica is faster.

Geometry II - M.Asai (SLAC) 21

mother volume

G4PVDivision - 1

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions, // number of division is given
 const G4double offset);
	

•  The size (width) of the daughter volume is calculated as
((size of mother) - offset) / nDivisions

Geometry II - M.Asai (SLAC) 22

nDivisions
offset

G4PVDivision - 2

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4double width, // width of daughter volume is given
 const G4double offset);
	

•  The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)
–  As many daughters as width and offset allow

Geometry II - M.Asai (SLAC) 23

offset
width

G4PVDivision - 3

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double width, // both number of division and width are given
 const G4double offset);
	

•  nDivisions daughters of width thickness

Geometry II - M.Asai (SLAC) 24

nDivisions

width
offset

G4PVDivision
•  G4PVDivision currently supports following shapes / axes.

–  G4Box : kXAxis, kYAxis, kZAxis
–  G4Tubs : kRho, kPhi, kZAxis
–  G4Cons : kRho, kPhi, kZAxis
–  G4Trd : kXAxis, kYAxis, kZAxis
–  G4Para : kXAxis, kYAxis, kZAxis
–  G4Polycone : kRho, kPhi, kZAxis

•  kZAxis - the number of divisions has to be the same as solid sections,
(i.e. numZPlanes-1), the width will not be taken into account.

–  G4Polyhedra : kRho, kPhi, kZAxis
•  kPhi - the number of divisions has to be the same as solid sides, (i.e.

numSides), the width will not be taken into account.
•  kZAxis - the number of divisions has to be the same as solid sections,

(i.e. numZPlanes-1), the width will not be taken into account.
•  In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if

width is provided, it is taken as the width at the -Z radius; the width at other radii
will be scaled to this one.	

Geometry II - M.Asai (SLAC) 25

G4ReplicatedSlice

•  New extension of G4Division introduced with version 9.4.
•  It allows gaps in between divided volumes.

G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4int nDivisions, const G4double half_gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4double width, const G4double half_gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4int nDivisions, const G4double width,
 const G4double half_gap, const G4double offset);

Geometry II - M.Asai (SLAC) 26

nDivisions
offset

half_gap

Version 10.4-p02

Nested parameterization

!  Suppose your geometry has three-dimensional regular reputation of same shape
and size of volumes without gap between volumes. And material of such
volumes are changing according to the position.

!  E.g. voxels made by CT Scan data (DICOM)

!  Instead of direct three-dimensional parameterized volume,

use replicas for the first and second axes sequentially, and then use one-
dimensional parameterization along the third axis.

!  It requires much less memory for geometry optimization and gives much faster
navigation for ultra-large number of voxels.

Nested parameterization	

Geometry II - M.Asai (SLAC) 28

Nested parameterization	

Geometry II - M.Asai (SLAC) 29

0

1

2

0
1

2 0 1 2 3

!  Given geometry is defined as two sequential
replicas and then one-dimensional
parameterization,

!  Material of a voxel must be
parameterized not only by the copy
number of the voxel, but also by the
copy numbers of ancestors.

!  Material is indexed by three indices.

!  G4VNestedParameterisation is a special parameterization class derived from
G4VPVParameterisation base class.

!  ComputeMaterial() method of G4VNestedParameterisation has a touchable
object of the parent physical volume, in addition to the copy number of
the voxel.

!  Index of first axis = theTouchable->GetCopyNumber(1);

!  Index of second axis = theTouchable->GetCopyNumber(0);

!  Index of third axis = copy number

G4VNestedParameterisation
•  G4VNestedParameterisation is derived from G4VPVParameterization.
•  G4VNestedParameterisation class has three pure virtual methods you

have to implement,
–  in addition to ComputeTransformation() method, which is mandatory

for all G4VPVParameterization classes.

virtual G4Material* ComputeMaterial(G4VPhysicalVolume *currentVol,
 const G4int repNo, const G4VTouchable *parentTouch=0)=0;

•  Return a material pointer w.r.t. copy numbers of itself and ancestors.
•  Must cope with parentTouch=0 for navigator's sake. Typically, return a

default material if parentTouch=0.

virtual G4int GetNumberOfMaterials() const=0;
•  Return total number of materials which may appear as the return value

of ComputeMaterial() method.

virtual G4Material* GetMaterial(G4int idx) const=0;
•  Return idx-th material.
•  “idx” is not a copy number. idx = [0, nMaterial-1]

Geometry II - M.Asai (SLAC) 30

G4VNestedParameterisation

•  G4VNestedParameterisation is a kind of G4VPVParameterization.
–  It can be used as an argument of G4PVParameterised.

–  All other arguments of G4PVParameterised are unaffected.

•  Nested parameterization of placement volume is not supported.
–  All levels used as indices of material must be repeated volume.

There cannot be a level of placement volume in between.

Geometry II - M.Asai (SLAC) 31

Version 10.4-p02

Assembly volume

Grouping volumes
•  To represent a regular pattern of positioned volumes, composing a more or

less complex structure
–  structures which are hard to describe with simple replicas or

parameterised volumes
–  structures which may consist of different shapes
–  Too densely positioned to utilize a mother volume

•  Assembly volume
–  acts as an envelope for its daughter volumes
–  its role is over once its logical volume has been placed
–  daughter physical volumes become independent copies in the final

structure
•  Participating daughter logical volumes are treated as triplets

–  logical volume
–  translation w.r.t. envelop
–  rotation w.r.t. envelop

Geometry II - M.Asai (SLAC) 33

G4AssemblyVolume
G4AssemblyVolume::AddPlacedVolume

 (G4LogicalVolume* volume,

 G4ThreeVector& translation,

 G4RotationMatrix* rotation);

•  Helper class to combine daughter logical volumes in arbitrary way

–  Imprints of the assembly volume are made inside a mother logical
volume through G4AssemblyVolume::MakeImprint(…)

–  Each physical volume name is generated automatically

•  Format: av_WWW_impr_XXX_YYY_ZZZ

–  WWW – assembly volume instance number

–  XXX – assembly volume imprint number

–  YYY – name of the placed logical volume in the assembly

–  ZZZ – index of the associated logical volume

–  Generated physical volumes (and related transformations) are
automatically managed (creation and destruction)

Geometry II - M.Asai (SLAC) 34

G4AssemblyVolume : example
G4AssemblyVolume* assembly = new G4AssemblyVolume();
G4RotationMatrix Ra;
G4ThreeVector Ta;
Ta.setX(…); Ta.setY(…); Ta.setZ(…);
assembly->AddPlacedVolume(plateLV, Ta, Ra);
 … // repeat placement for each daughter

for(unsigned int i = 0; i < layers; i++) {
 G4RotationMatrix Rm(…);
 G4ThreeVector Tm(…);
 assembly->MakeImprint(worldLV, Tm, Rm);
}

Geometry II - M.Asai (SLAC) 35

Version 10.4-p02

Reflected volume

Reflecting solids

•  G4ReflectedSolid (derived from G4VSolid)
–  Utility class representing a solid shifted from its original reference frame to a

new mirror symmetric one
–  The reflection (G4Reflect[X/Y/Z]3D) is applied as a decomposition into

rotation and translation
•  G4ReflectionFactory

–  Singleton object using G4ReflectedSolid for generating placements of
reflected volumes

•  Reflections are currently limited to simple CSG solids.
–  will be extended soon to all solids

Geometry II - M.Asai (SLAC) 37

!  Let's take an example of a pair of
mirror symmetric volumes.

!  Such geometry cannot be made by
parallel transformation

 or 180 degree rotation.

Reflecting hierarchies of volumes - 1
G4PhysicalVolumesPair G4ReflectionFactory::Place
 (const G4Transform3D& transform3D, // the transformation
 const G4String& name, // the name
 G4LogicalVolume* LV, // the logical volume
 G4LogicalVolume* motherLV, // the mother volume
 G4bool noBool, // currently unused
 G4int copyNo) // optional copy number

•  Used for normal placements:
i.  Performs the transformation decomposition
ii.  Generates a new reflected solid and logical volume

Ø  Retrieves it from a map if the reflected object is already created
iii.  Transforms any daughter and places them in the given mother
iv.  Returns a pair of physical volumes, the second being a placement in the

reflected mother
•  G4PhysicalVolumesPair is

std::map<G4VPhysicalVolume*,G4VPhysicalVolume*>

Geometry II - M.Asai (SLAC) 38

Reflecting hierarchies of volumes - 2
G4PhysicalVolumesPair G4ReflectionFactory::Replicate

 (const G4String& name, // the actual name

 G4LogicalVolume* LV, // the logical volume

 G4LogicalVolume* motherLV, // the mother volume

 Eaxis axis // axis of replication

 G4int replicaNo // number of replicas

 G4int width, // width of single replica

 G4int offset=0) // optional mother offset

–  Creates replicas in the given mother volume

–  Returns a pair of physical volumes, the second being a replica in the reflected
mother

Geometry II - M.Asai (SLAC) 39

Version 10.4-p02

Touchable

Step point and touchable

•  As mentioned already, G4Step has two G4StepPoint objects as its starting and
ending points. All the geometrical information of the particular step should be
taken from “PreStepPoint”.
–  Geometrical information associated with G4Track is identical to
“PostStepPoint”.

•  Each G4StepPoint object has
–  Position in world coordinate system
–  Global and local time
–  Material
–  G4TouchableHistory for geometrical information

•  G4TouchableHistory object is a vector of information for each geometrical
hierarchy.
–  copy number
–  transformation / rotation to its mother

•  Since release 4.0, handles (or smart-pointers) to touchables are intrinsically
used. Touchables are reference counted.

Geometry II - M.Asai (SLAC) 41

Copy number

•  Suppose a calorimeter is made of
4x5 cells.

–  and it is implemented by two
levels of replica.

•  In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

•  To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Geometry II - M.Asai (SLAC) 42

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

!  Remember geometrical information in G4Track is identical to
"PostStepPoint".

!  You cannot get the correct copy number for "PreStepPoint" if you directly
access to the physical volume.

!  Use touchable to get the proper copy number, transform matrix, etc.

Touchable
•  G4TouchableHistory has information of geometrical hierarchy of the point.

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

 (G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo

 = theTouchable->GetVolume(1)->GetCopyNo();

G4int grandMotherCopyNo

 = theTouchable->GetVolume(2)->GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

 ->GetTopTransform().TransformPoint(worldPos);

Geometry II - M.Asai (SLAC) 43

