
Version 10.4-p02

Geometry I

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

•  Introduction

•  G4VUserDetectorConstruction class

•  Solid and shape

•  Logical volume

•  Region

•  Physical volume

•  Placement

Geometry I - M.Asai (SLAC) 2

Version 10.4-p02

Introduction

Detector geometry

•  Three conceptual layers
–  G4VSolid -- shape, size

–  G4LogicalVolume -- daughter physical volumes,

 material, sensitivity, user limits, etc.

–  G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 4

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Define detector geometry

•  Basic strategy

G4VSolid* pBoxSolid =

 new G4Box(“aBoxSolid”,

 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid,

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ),

 pBoxLog, “aBoxPhys”, pMotherLog,

 0, copyNo);

•  A volume is placed in its mother volume. Position and rotation of the daughter volume is
described with respect to the local coordinate system of the mother volume. The origin of
mother volume’s local coordinate system is at the center of the mother volume.

–  Daughter volume cannot protrude from mother volume.
Geometry I - M.Asai (SLAC) 5

Solid : shape and size Logical volume :
+ material, sensitivity, etc.

Physical volume :
 + rotation and position

Geometrical hierarchy
•  One logical volume can be placed more than

once. One or more volumes can be placed to a
mother volume.

•  Note that the mother-daughter relationship is an
information of G4LogicalVolume.
–  If the mother volume is placed more than

once, all daughters are by definition appear
in all of mother physical volumes.

•  The world volume must be a unique physical
volume which fully contains all the other
volumes.
–  The world volume defines the global

coordinate system. The origin of the global
coordinate system is at the center of the
world volume.

–  Position of a track is given with respect to
the global coordinate system.

Geometry I - M.Asai (SLAC) 6

Version 10.4-p02

G4VUserDetectorConstruction

User classes
•  main()

–  Geant4 does not provide main().
Note : classes written in red are mandatory.

•  Initialization classes
–  Use G4RunManager::SetUserInitialization() to define.
–  Invoked at the initialization

•  G4VUserDetectorConstruction
•  G4VUserPhysicsList
•  G4VUserActionInitialization

•  Action classes
–  Instantiated in G4VUserActionInitialization.
–  Invoked during an event loop

•  G4VUserPrimaryGeneratorAction
•  G4UserRunAction
•  G4UserEventAction
•  G4UserStackingAction
•  G4UserTrackingAction
•  G4UserSteppingAction

Geometry I - M.Asai (SLAC) 8

G4VUserDetectorConstruction

class	G4VUserDetectorConstruc2on	
{	
		public:	
				G4VUserDetectorConstruc2on();	
				virtual	~G4VUserDetectorConstruc2on();	
		public:	
				virtual	G4VPhysicalVolume*	Construct()	=	0;	
				virtual	void	ConstructSDandField();	
		public:	
				void	RegisterParallelWorld(G4VUserParallelWorld*);	

Geometry I - M.Asai (SLAC) 9

Construct() should return the pointer of the world physical
volume. The world physical volume represents all of your
geometry setup.

Sensitive detector and field should be instantiated and set to
logical volumes in ConstructSDandField() method.

Your detector construction
#ifndef MyDetctorConstruction_h
#define MyDetctorConstruction_h 1
#include “G4VUserDetectorConstruction.hh”
class MyDetctorConstruction
 : public G4VUserDetectorConstruction
{
 public:
 G4VUserDetectorConstruction();
 virtual ~G4VUserDetectorConstruction();
 virtual G4VPhysicalVolume* Construct();
 virtual void ConstructSDandField();
 public:
 // set/get methods if needed
 private:
 // granular private methods if needed
 // data members if needed
};
#endif

Geometry I - M.Asai (SLAC) 10

Describe your detector

•  Derive your own concrete class from G4VUserDetectorConstruction abstract
base class.

•  Implement Construct() and ConstructSDandField() methods

1)  Construct all necessary materials

2)  Define shapes/solids

3)  Define logical volumes

4)  Place volumes of your detector geometry

5)  Associate (magnetic) field to geometry (optional)

6)  Instantiate sensitive detectors / scorers and set them to corresponding
logical volumes (optional)

7)  Define visualization attributes for the detector elements (optional)

8)  Define regions (optional)

•  Set your construction class to G4RunManager or G4MTRunManager

Geometry I - M.Asai (SLAC) 11

Version 10.4-p02

Solid and shape

G4VSolid

•  Abstract class. All solids in Geant4
are derived from it.

•  It defines but does not implement all
functions required to:

–  compute distances between the
shape and a given point

–  check whether a point is inside
the shape

–  compute the extent of the shape

–  compute the surface normal to
the shape at a given point

•  User can create his/her own solid
class.

Geometry I - M.Asai (SLAC) 13

Solids

Geometry I - M.Asai (SLAC) 14

!  Solids defined in Geant4:

!  CSG (Constructed Solid Geometry) solids

!  G4Box, G4Tubs, G4Cons, G4Trd, …

!  Analogous to simple GEANT3 CSG solids

!  Specific solids (CSG like)

!  G4Polycone, G4Polyhedra, G4Hype, …

!  Tessellated solid

!  Solid made by facets

!  Boolean solids

!  G4UnionSolid, G4SubtractionSolid, …

CSG: G4Box, G4Tubs

G4Box(const G4String &pname, // name

 G4double half_x, // X half size

 G4double half_y, // Y half size

 G4double half_z); // Z half size

G4Tubs(const G4String &pname, // name

 G4double pRmin, // inner radius

 G4double pRmax, // outer radius

 G4double pDz, // Z half length

 G4double pSphi, // starting Phi

 G4double pDphi); // segment angle

Geometry I - M.Asai (SLAC) 15

Other CSG solids

Geometry I - M.Asai (SLAC) 16

G4Cons

G4Para
(parallelepiped)

G4Trd

G4Trap

G4Sphere

G4Torus

Consult to
Section 4.1.2 of Geant4 Application
Developers Guide for all available shapes.	

G4Orb
(full solid sphere)

Specific CSG Solids: G4Polycone
G4Polycone(const G4String& pName,

 G4double phiStart,

 G4double phiTotal,

 G4int numRZ,

 const G4double r[],

 const G4double z[]);

•  numRZ - numbers of corners in the r,z space

•  r, z - coordinates of corners

 	

Geometry I - M.Asai (SLAC) 17

Other Specific CSG solids

Geometry I - M.Asai (SLAC) 18

G4Polyhedra

G4EllipticalTube G4Ellipsoid

G4EllipticalCone

G4Hype G4Tet
(tetrahedra)

G4TwistedBox G4TwistedTrd G4TwistedTrap

G4TwistedTubs

Consult to
Section 4.1.2 of Geant4 Application
Developers Guide for all available shapes.	

Tessellated solids

•  G4TessellatedSolid (since 8.1)
–  Generic solid defined by a number of facets (G4VFacet)

•  Facets can be triangular (G4TriangularFacet) or quadrangular
(G4QuadrangularFacet)

–  Constructs especially important for conversion of complex
geometrical shapes imported from CAD systems

–  But can also be explicitly defined:
•  By providing the vertices of the facets in anti-clock wise order, in

absolute or relative reference frame
–  GDML binding

Geometry I - M.Asai (SLAC) 19

Version 10.4-p02

A CAD imported assembly
with tessellated solids

Geometry	updates	–	New	solid	library	
•  An	important	effort	was	begun	in	the	last	couple	of	years	to	write	a	new	solid	library,	

reviewing	at	the	algorithmic	level	most	of	the	primi2ves	and	provides	an	enhanced,	
op2mized	and	well-tested	implementa2on	to	be	shared	among	soSware	packages.		

•  In	most	cases	considerable	performance	improvement	was	achieved.		
–  For	example,	the	2me	required	to	compute	intersec2ons	with	the	tessellated	solid	

was	drama2cally	reduced	with	the	adop2on	of	spa2al	par22oning	for	composing	
facets	into	a	3D	grid	of	voxels.	

•  Such	techniques	allow	speedup	factors	of	a	few	thousand	for	rela2vely	complex	
structures	having	of	order	100k	to	millions	of	facets,	which	is	typical	for	geometry	
descrip2ons	imported		from	CAD	drawings.	
–  Consequently,	it	is	now	possible	to	use	tessellated	geometries	for	tuning	the	

precision	in	simula2on		
by	increasing	the	mesh		
resolu2on,	something		
that	was	not	possible		
before.	

Geometry I - M.Asai (SLAC) 21

Boolean Solids

Geometry I - M.Asai (SLAC) 22

!  Solids can be combined using boolean operations:

!  G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

!  Requires: 2 solids, 1 boolean operation, and an (optional) transformation for
the 2nd solid

!  2nd solid is positioned relative to the coordinate system of the 1st solid

!  Result of boolean operation becomes a solid. Thus the third solid can be
combined to the resulting solid of first operation.

!  Solids to be combined can be either CSG or other Boolean solids.

G4UnionSolid G4IntersectionSolid G4SubtractionSolid

Geometry	updates	–	New	“mul2-union”	solid	
•  In	addi2on	to	a	full	set	of	highly	op2mized	primi2ves	and	a	tessellated	solid,	the	library	

includes	a	new	"mul2-union”	structure	implemen2ng	a	composite	set	of	many	solids	to	
be	placed	in	3D	space.		

•  This	differs	from	the	simple	technique	based	on	Boolean	unions,	with	the	aim	of	
providing	excellent	scalability	on	the	number	of	cons2tuent	solids.	

•  The	mul2-union	adopts	a	similar	voxeliza2on	technique	to	par22on	3D	space,	allowing	
drama2cally	improved	speed	and	scalability	over	the	original	implementa2on	based	on	
Boolean	unions.		

Geometry I - M.Asai (SLAC) 23

Boolean solid

Geometry I - M.Asai (SLAC) 24

Boolean Solids - example

Geometry I - M.Asai (SLAC) 25

G4VSolid* box = new G4Box(“Box",50*cm,60*cm,40*cm);

G4VSolid* cylinder

 = new G4Tubs(“Cylinder”,0.,50.*cm,50.*cm,0.,2*M_PI*rad);

G4VSolid* union

 = new G4UnionSolid("Box+Cylinder", box, cylinder);

G4VSolid* subtract

 = new G4SubtractionSolid("Box-Cylinder", box, cylinder,

 0, G4ThreeVector(30.*cm,0.,0.));

G4RotationMatrix* rm = new G4RotationMatrix();

rm->RotateX(30.*deg);

G4VSolid* intersect

 = new G4IntersectionSolid("Box&&Cylinder",

 box, cylinder, rm, G4ThreeVector(0.,0.,0.));

!  The origin and the coordinates of the combined solid are the same as those of
the first solid.

Version 10.4-p02

G4LogicalVolume

G4LogicalVolume

G4LogicalVolume(G4VSolid* pSolid,

 G4Material* pMaterial,

 const G4String &name,

 G4FieldManager* pFieldMgr=0,

 G4VSensitiveDetector* pSDetector=0,

 G4UserLimits* pULimits=0);
•  Contains all information of volume except position and rotation

–  Shape and dimension (G4VSolid)
–  Material, sensitivity, visualization attributes
–  Position of daughter volumes
–  Magnetic field, User limits, Region

•  Physical volumes of same type can share the common logical volume object.
•  The pointers to solid must NOT be null.
•  The pointers to material must NOT be null for tracking geometry.
•  It is not meant to act as a base class.

Geometry I - M.Asai (SLAC) 27

Computing volumes and weights
•  Geometrical volume of a generic solid or boolean composition can be

computed from the solid:

 G4double GetCubicVolume();

–  Exact volume is determinatively calculated for most of CSG solids, while
estimation based on Monte Carlo integration is given for other solids.

•  Overall weight of a geometry setup (sub-geometry) can be computed from the

logical volume:

 G4double GetMass(G4bool forced=false,

 G4bool propagate=true, G4Material* pMaterial=0);

–  The computation may require a considerable amount of time, depending

on the complexity of the geometry.

–  The return value is cached and reused until forced=true.

–  Daughter volumes will be neglected if propagate=false.

Geometry I - M.Asai (SLAC) 28

Version 10.4-p02

Region

Region

•  A region may have its unique
–  Production thresholds (cuts)

•  If a region in the mass geometry does not have its own production
thresholds, those of the default region are used (i.e., may not be those of
the parent region).

–  User limits
•  Artificial limits affecting to the tracking, e.g. max step length, max

number of steps, min kinetic energy left, etc.
•  You can set user limits directly to logical volume as well. If both logical

volume and associated region have user limits, those of logical volume
wins.

–  User region information
•  E.g. to implement a fast Boolean method to identify the nature of the

region.
–  Fast simulation manager
–  Regional user stepping action
–  Field manager

•  Please note :
–  World logical volume is recognized as the default region. User is not allowed

to define a region to the world logical volume. Geometry I - M.Asai (SLAC) 30

Root logical volume

•  A logical volume can be a region. More
than one logical volumes may belong to
a region.

•  A region is a part of the geometrical
hierarchy, i.e. a set of geometry
volumes, typically of a sub-system.

•  A logical volume becomes a root logical
volume once a region is assigned to it.
–  All daughter volumes belonging to

the root logical volume share the
same region, unless a daughter
volume itself becomes to another
root.

•  Important restriction :
–  No logical volume can be shared by

more than one regions, regardless
of root volume or not.

Geometry I - M.Asai (SLAC) 31

World Volume - Default Region

Root logical - Region A

Root logical -
Region B

G4Region

•  A region is instantiated and defined by

G4Region* aRegion = new G4Region(“region_name”);

aRegion->AddRootLogicalVolume(aLogicalVolume);

–  Region propagates down to all geometrical hierarchy until the bottom or
another root logical volume.

•  Production thresholds (cuts) can be assigned to a region by

G4Region* aRegion

 = G4RegionStore::GetInstance()->GetRegion(“region_name”);

G4ProductionCuts* cuts = new G4ProductionCuts;

cuts->SetProductionCut(cutValue);

aRegion->SetProductionCuts(cuts);

Geometry I - M.Asai (SLAC) 32

G4Region class

•  G4Region class may take following quantities.

–  void SetProductionCuts(G4ProductionCuts* cut);

–  void SetUserInformation(G4VUserRegionInformation* uri);

–  void SetUserLimits(G4UserLimits* ul);

–  void SetFastSimulationManager(G4FastSimulationManager* fsm);

–  void SetRegionalSteppingAction(G4UserSteppingAction* rusa);

–  void SetFieldManager(G4FieldManager* fm);

•  Please note:

–  If any of the above properties are not set for a region, properties of the world

volume (i.e. default region) are used. Properties of mother region do not

propagate to daughter region.

Geometry I - M.Asai (SLAC) 33

Version 10.4-p02

Physical volume

Detector geometry

•  Three conceptual layers
–  G4VSolid -- shape, size

–  G4LogicalVolume -- daughter physical volumes,

 material, sensitivity, user limits, etc.

–  G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 35

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Define detector geometry

•  Basic strategy
G4VSolid* pBoxSolid =

 new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid, pBoxMaterial,

 “aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ), pBoxLog,

 “aBoxPhys”, pMotherLog, 0, copyNo);

Geometry I - M.Asai (SLAC) 36

Physical Volumes
•  Placement volume : it is one positioned volume

–  One physical volume object represents one “real” volume.

•  Repeated volume : a volume placed many times

–  One physical volume object represents any number of
“real” volumes.

–  reduces use of memory.

–  Parameterised

•  repetition w.r.t. copy number

–  Replica and Division

•  simple repetition along one axis

•  A mother volume can contain either

–  many placement volumes

–  or, one repeated volume

Geometry I - M.Asai (SLAC) 37

repeated

placement

Physical volume

•  G4PVPlacement 1 Placement = One Placement Volume
–  A volume instance positioned once in its mother volume

•  G4PVParameterised 1 Parameterized = Many Repeated Volumes
–  Parameterized by the copy number

•  Shape, size, material, sensitivity, vis attributes, position and rotation can
be parameterized by the copy number.

•  You have to implement a concrete class of G4VPVParameterisation.
–  Reduction of memory consumption
–  Currently: parameterization can be used only for volumes that either

a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

–  By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

Geometry I - M.Asai (SLAC) 38

Physical volume

•  G4PVReplica 1 Replica = Many Repeated Volumes
–  Daughters of same shape are aligned along one axis
–  Daughters fill the mother completely without gap in between.

•  G4PVDivision 1 Division = Many Repeated Volumes
–  Daughters of same shape are aligned along one axis and fill the mother.
–  There can be gaps between mother wall and outmost daughters.
–  No gap in between daughters.

•  G4ReflectionFactory 1 Placement = a pair of Placement volumes
–  generating placements of a volume and its reflected volume
–  Useful typically for end-cap calorimeter

•  G4AssemblyVolume 1 Placement = a set of Placement volumes
–  Position a group of volumes

Geometry I - M.Asai (SLAC) 39

Version 10.4-p02

G4PVPlacement

G4PVPlacement
G4PVPlacement(
 G4Transform3D(G4RotationMatrix &pRot, // rotation of daughter volume
 const G4ThreeVector &tlate), // position in mother frame

 G4LogicalVolume *pDaughterLogical,
 const G4String &pName,
 G4LogicalVolume *pMotherLogical,
 G4bool pMany, // ‘true’ is not supported yet…
 G4int pCopyNo, // unique arbitrary integer
 G4bool pSurfChk=false); // optional boundary check
•  Single volume positioned relatively to the mother volume.

Geometry I - M.Asai (SLAC) 41

rotation

Mother volume

translation in

mother frame

Alternative G4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot, // rotation of mother frame

 const G4ThreeVector &tlate, // position in mother frame

 G4LogicalVolume *pDaughterLogical,

 const G4String &pName,

 G4LogicalVolume *pMotherLogical,

 G4bool pMany, // ‘true’ is not supported yet…

 G4int pCopyNo, // unique arbitrary integer

 G4bool pSurfChk=false); // optional boundary check

•  Single volume positioned relatively to the mother volume.

Geometry I - M.Asai (SLAC) 42

Mother volume

rotation

translation in

mother frame

Note:	

• 		This	G4PVPlacement	is	iden2cal	to	the	previous	one	if	there	is	no	rota2on.	

• 		Previous	one	is	much	easier	to	understand.	

• 		The	advantage	of	this	second	constructor	is	se`ng	the	pointer	of	the	rota2on	

			matrix	rather	than	providing	the	values	of	the	matrix.	

• 		You	may	change	the	matrix	without	accessing	to	the	physical	volume.	

• 		This	is	for	power-users,	though.	

