A SIMULATION TOOLKIT

Version 10.4-p02

Kernel ||

Makoto Asai (SLAC)
Geant4 Tutorial Course

‘ ~ h NAT I O N A L U.S. DEPARTMENT OF
1 A ENERGY

ACCELERATOR

QHHV LABORATORY Office of Science

Contents

* User limits

« Attaching user information to G4 classes

« Fast simulation (a.k.a. shower parameterization)
« Stacking mechanism

Kernel 11 - M.Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

User limits

b l ‘ h NATIONAL) . DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Office of Science

G4UserLimits

(ad BV V
« User limits are artificial limits affecting to the tracking. -
G4UserLimits (G4double ustepMax = DBL MAX,
G4double utrakMax = DBL MAX,
G4double utimeMax = DBL MAX,
G4double uekinMin = 0.,
G4double urangMin = 0.);
— fMaxStep; /[max allowed Step size in this volume
— fMaxTrack; // max total track length
— fMaxTime; // max global time
— fMinEkine; // min kinetic energy remaining (only for charged particles)

— fMinRange; // min remaining range (only for charged particles)
Blue : affecting to step
Red : affecting to track
* You can set user limits to logical volume and/or to a region.
— User limits assigned to logical volume do not propagate to daughter volumes.

— User limits assigned to region propagate to daughter volumes unless
daughters belong to another region.

— If both logical volume and associated region have user limits, those of logical
volume win.

Processes co-working with G4UserLimits ...

T AN
In addition to instantiating G4UserLimits and setting it to logical volume or

region, you have to assign the following process(es) to particle types you want to
affect.

Limit to step
fMaxStep : max allowed Step size in this volume
— G4StepLimiter process must be defined to affected particle types.
— This process limits a step, but it does not kill a track.
Limits to track
fMaxTrack : max total track length
fMaxTime : max global time
fMinEkine : min kinetic energy (only for charged particles)
fMinRange : min remaining range (only for charged particles)
— G4UserSpecialCuts process must be defined to affected particle types.

— This process limits a step and kills the track when the track comes to one of
these limits. Step limitation occurs only for the final step.

Kernel 11 - M.Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

Attaching user information to some kernel classes

1 A gy NTonA 7

ACCELERATOR

QHHV LABORATORY ‘ Office of Science

Attaching user information

« Abstract classes
— You can use your own class derived from provided base class
— G4Run, G4VHit, G4VDigit, G4VTrajectory, G4V TrajectoryPoint
« Concrete classes
— You can attach a user information class object
« G4Event - G4VUserEventinformation
G4Track - G4VUserTrackIinformation

G4PrimaryVertex - G4VUserPrimaryVertexinformation

G4PrimaryParticle - G4VUserPrimaryParticleInformation

G4Region - G4VUserRegionInformation

— User information class object is deleted when associated Geant4 class
object is deleted.

Kernel 11 - M.Asai (SLAC)

Trajectory and trajectory point

» Trajectory and trajectory point class objects persist until the end of an event.

« G4VTrajectory is the abstract base class to represent a trajectory, and
G4V TrajectoryPoint is the abstract base class to represent a point which makes
up the trajectory.
— In general, trajectory class is expected to have a vector of trajectory points.
« Geant4 provides G4 Trajectoy and G4 TrajectoryPoint concrete classes as

defaults. These classes keep only the most common quantities.

— If the you want to keep some additional information, you are encouraged to
implement your own concrete classes deriving from G4V Trajectory and
G4VTrajectoryPoint base classes.

— Do not use G4 Trajectory nor G4 TrajectoryPoint concrete class as base

classes unless you are sure not to add any additional data member.

« Source of memory leak

Kernel 11 - M.Asai (SLAC)

Creation of trajectories

» Naive creation of trajectories occasionally causes a memory consumption
concern, especially for high energy EM showers.

* In UserTrackingAction, you can switch on/off the creation of a trajectory for the
particular track.

void MyTrackingAction
: :PreUserTrackingAction (const G4Track* aTrack)

if(...)
{ fpTrackingManager->SetStoreTrajectory(true),; }
else

{ fpTrackingManager->SetStoreTrajectory(false); }

« If you want to use user-defined trajectory, object should be instantiated in this
method and set to G4 TrackingManager by SetTrajectory() method.

fpTrackingManager->SetTrajectory (new MyTrajectory(..))

Kernel 11 - M.Asai (SLAC)

Bookkeeping issues

« Connection from G4PrimaryParticle to G4 Track
G4int G4PrimaryParticle::GetTracklD()
— Returns the track ID if this primary particle had been converted into G4 Track,

otherwise -1.
» Both for primaries and pre-assigned decay products
« Connection from G4Track to G4PrimaryParticle
G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

— Returns the pointer of G4PrimaryParticle object if this track was defined as a

primary or a pre-assigned decay product, otherwise null.

« G4VUserPrimaryVertexinformation, G4VUserPrimaryParticleInformation and

G4VUserTrackIinformation may be used for storing additional information.

— Information in UserTrackinformation should be then copied to user-defined

trajectory class, so that such information is kept until the end of the event.

Kernel 11 - M.Asai (SLAC)

Examples/extended/
runAndEvent/REO1

* An example for connecting
G4PrimaryParticle, G4Track, hits
and trajectories, by utilizing REO1Trae

G4VUserTrackinformation and
G4VUserRegionIinformation.

e« SourceTracklD means the
ID of a track which gets
into calorimeter.

* PrimaryTracklD is copied
UserTrackIinformation
daughter tracks.

» SourceTracklD is updated for
secondaries born in tracker, A

while just copied in calorimeter.

1 A7/

DM\

EXamples/extenaed/runAnacvent/

- PY N4 el AN
TSR N
PELMAEY DALELOLEE == e e i i i i e e e e e e
Primary wvertex (0,0,0) at £t = 0 [ns]
==pDGcode 25 is not defined in G4 (19.53824,24.846369,-6.0465937) [GeV] >>> G4Track ID 1
==pDGcode 23 is not defined in G4 (1.1302123,-23.156443,114.16953) [GeV] >>> G4Track ID 6780
==pDGcode 13 (mu-) (-22.464989,-38.451706,20.864853) [GeV] >>> G4Track ID 6782
==PDGcode -13 (mut) (23.595201,15.20526,93.304688) [GeV] >>> GATrack ID 6781
—— . e Y -~ S S I T L | L ~ N AL B) LN et talelel N ™ (e Tl Ealt B - S, L T B B Y F o~ v L - ~ N Y - /-'-I'-Iq
TrackID =6782 : ParentID=6780 : TrackStatus=1 TraJectory Of track6782
Particle name : mu- PDG code : 13 Charge : -1
= Original momentum : -22.464989 -38.451706 20.864853 GeV
Ve;tex ’t4£11?61i TrackID 6782 Position (-126.11431,-215.85917.117.12988) . 1878.8831 [kev]
urrent Lrale<’ ppaekID 6782 2 Position (-127.89383, . \
P°%nt[2] POS1tiol n . okID 6782 Position (-176.56317,-302.20101,163.96689) : 1776.6378 [keV]
P°%nt[3] POS1tiol n . .okID 6782 Position (-201.7911,-345.36988,187.38871) : 2413.8986 [keV]
P°%nt[4] Fositiol n . okID 6782 Position (-227.01961,-388.53841,210.81469) : 550.67792 [keV]
P°%nt[5] POS1tlol n . .okID 6782 Position (-227.70865,-389.71739,211.45445) : 638.57593 [keV]
Point[3] Positiol g . .1T1p 6782 Position (-228.6702.-391.36253.212.34721) : 778.03992 TkeVl

Poin

Poin Source track ID 6782 (mu-,49.162515[GeV]) at (-252.2476Z2,-431.70723,234.23766)

Poin Original primary track ID 1 {unknown,335.96305[GeV]) . .

Poin Cell[11,31] .028283647 [GeV] Calorimeter hits of track6782
Poin Cell[1lZ,31] .03982229%96 [GeV]
Poin Cell[13,31] .050185748 [GeV]
Poin Cell[14,31] .049883344 [GeV
Poin Cell[15,31] .041446764 [GeV]
Poin Cell[16,31] .06386168 [GeV]
Poin Cell[lé6,32] .0036926015 [GeV]
Poin Cell[17,32] .2955385e-05 [GeV]
Poin Cell[17,31] .0043463898 [GeV]
Poin Cell[15,32] .010138473 [GeV]
Poin Cell[1l4,32] .0018386352 [GeV]
Poin Cell[13,32] .0018836759% [GeV]
Poin Cell[1Z,32] 0.00036846059 [GeV]

Poin ### Total energy deposition in calorimeter by a source track in 13 cells : 0.29582467 (GeV)

OO0 o0 OoOoO0o0 0000

.
POlanaoj EUodiedidii | GG s T ia Ty Do s Dy G s e 1

B - - T72A71 Demoade mpee— F_™7 "7 =097 A0 1°aad 247 404000

REO1RegionInformation

ol AR

S iy = O8
« REO1 example has three regions, i.e. default world region, tracker region and
calorimeter region.

— Each region has its unique object of REO1RegionInformation class.

class REOlRegionInformation : public G4VUserRegionInformation

{

public:
G4bool IsWorld() const;
G4bool IsTracker () const;
G4bool IsCalorimeter () const;

};

« Through step->preStepPoint->physicalVolume->logicalVolume->region->
regioninformation, you can easily identify in which region the current step
belongs.

— Don’t use volume name to identify.

Kernel 11 - M.Asai (SLAC)

Use of REO1Regionlnformation

N

void REO1SteppingAction::UserSteppingAction(const G4Step * theStep)
{ /] Suspend a track if it is entering into the calorimeter

/I get region information

G4 StepPoint* thePrePoint = theStep->GetPreStepPoint();

G4LogicalVolume* thePrelLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();
REO1RegionInformation* thePreRInfo

= (REO1RegionInformation*)(thePrelLV->GetRegion()->GetUserInformation());
G4StepPoint* thePostPoint = theStep->GetPostStepPoint();

G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();
REO1RegionInformation* thePostRInfo

= (REO1RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

Il check if it is entering to the calorimeter volume
if(1(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()))
{ theTrack->SetTrackStatus(fSuspend); }

Kernel 11 - M.Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

Fast simulation
(a.k.a. Shower parameterization)

1 A gy NTonA =

ACCELERATOR

QHHV LABORATORY Office of Science

Fast simulation - Generalities

« Fast Simulation, also called as shower parameterization, is a shortcut to the

"ordinary" tracking.

« Fast Simulation allows you to take over the tracking and implement your own

"fast" physics and detector response.

« The classical use case of fast simulation is the shower parameterization where

the typical several thousand steps per GeV computed by the tracking are

replaced by a few ten of energy deposits per GeV.

« Parameterizations are generally experiment dependent. Geant4 provides a

convenient framework and also one concrete parameterization G4Flash.

Kernel 11 - M.Asai (SLAC)

Parameterization features 1 Al

« Parameterizations take place in an

envelope. An envelope is a region,

that is typically a mother volume of ———
|
a sub-system or of a major module \=/

of such a sub-system.

« Parameterizations are often

dependent to particle types and/or
may be applied only to some kinds >
of particles.
« They are often not applied in
complicated regions. \

Kernel II - M.Asai (SLAC)

Models and envelope

« Concrete models are bound to the envelope

through a G4FastSimulationManager object. : =74
—] . —1
« This allows several models to be bound to one | EilepiEeliine ;',/
\ 1
envelope.

« The envelope is simply a G4Region which has

\ 4

G4FastSimulationManager. « envelope »
(G4Region)

« All [grand]...]Jdaughter volumes will be sensitive to

the parameterizations.

* A model may returns back to the "ordinary" '
G4FastSimulationManager

tracking the new state of G4Track after

parameterization (alive/killed, new position, new " ModelFOFElectronS]

v

momentum, etc.) and eventually adds secondaries

ModelForPions]

(e.g. punch-through) created by the

parameterization.

Kernel 11 - M.Asai (SLAC)

Fast Simulation 1 Al

 The Fast Simulation components are
indicated in white.

1/

G4LogicalVolume gL. Envelope
(G4LogicalVolume)

1/ /

\e—— G4FastSimulationManager
| —— |
\ ModelForElectrons]
Placements ¥

v

v

ModelForPions]

When the G4 Track comes in an envelope,

0 the G4FastSimulationManagerProcess
looks for a G4FastSimulationManager.
G4ProcessManager « If one exists, at the beginning of each step

| Process xox in the envelope, each model is asked for a
~l] trigger.

| Multiple Scattering « In case a trigger is issued, the model is

» G4FastSimulationManagerProcess applied at the point the G4track is.

« Otherwise, the tracking proceeds with a
normal tracking.

» G4Transportation

Kernel 11 - M.Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

Stack management

1 A gy NTonA =

ACCELERATOR

QHHV LABORATORY ‘ Office of Science

Track stacks in Geant4

By default, Geant4 has three track stacks.
— "Urgent", "Waiting" and "Postpone ToNextEvent"
— Each stack is a simple "last-in-first-out" stack.
— User can arbitrary increase the number of stacks.

« ClassifyNewTrack() method of UserStackingAction decides which stack each
newly storing track to be stacked (or to be killed).

— By default, all tracks go to Urgent stack.
 ATrack is popped up only from Urgent stack.

» Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to
Urgent stack.

— And NewStage() method of UsetStackingAction is invoked.

« Utilizing more than one stacks, user can control the priorities of processing
tracks without paying the overhead of "scanning the highest priority track".

— Proper selection/abortion of tracks/events with well designed stack
management provides significant efficiency increase of the entire simulation.

Kernel 11 - M.Asai (SLAC)

Stacking mechanism

Process
One

Track

User Stacking prmary
) tracks
Action
Pop - -
ew%tage (‘laSSIfy
Urgent ICparC| Reflassy
Stack PusiNgw E Sif%h
Pop
Transfer | Pop
L 1
Waiting | secondary
Stack Push and suspended
Deleted tracks
Transfer Push
Postpone To 4
Next Event |/

Stack

—an o 4 o o o o

G4UserStackingAction

« User has to implement three methods.
« G4ClassificationOfNewTrack ClassifyNewTrack(const G4 Track™)
— Invoked every time a new track is pushed to G4StackManager.
— Classification
» fUrgent - pushed into Urgent stack
« fWaiting - pushed into Waiting stack
« fPostpone - pushed into PostponeToNextEvent stack
« fKill - killed
« void NewStage()

— Invoked when Urgent stack becomes empty and all tracks in Waiting stack
are transferred to Urgent stack.

— All tracks which have been transferred from Waiting stack to Urgent stack
can be reclassified by invoking stackManager->ReClassify()
« void PrepareNewEvent()

— Invoked at the beginning of each event for resetting the classification
scheme.

Kernel 11 - M.Asai (SLAC)

Tips of stacking manipulations

« Classify all secondaries as f\Waiting until Reclassify() method is invoked.
— You can simulate all primaries before any secondaries.

« Classify secondary tracks below a certain energy as f\Waiting until Reclassify()
method is invoked.

— You can roughly simulate the event before being bothered by low energy
EM showers.

« Suspend a track on its fly. Then this track and all of already generated
secondaries are pushed to the stack.

— Given a stack is "last-in-first-out”, secondaries are popped out prior to the
original suspended track.

— Quite effective for Cherenkov lights

« Suspend all tracks that are leaving from a region, and classify these suspended
tracks as f\Waiting until Reclassify() method is invoked.

— You can simulate all tracks in this region prior to other regions.
— Note that some back splash tracks may come back into this region later.

Kernel 11 - M.Asai (SLAC)

Set the track status

» In UserSteppingAction, user can change the status of a track.

void MySteppingAction: :UserSteppingAction
(const G4Step * theStep)

G4ATrack* theTrack = theStep->GetTrack() ;

if (..) theTrack->SetTrackStatus (fSuspend) ;

« If atrack is killed in UserSteppingAction, physics quantities of the track (energy,
charge, etc.) are not conserved but completely lost.

Kernel 11 - M.Asai (SLAC)

REOS5StackingAction

* REO05 has simplified collider detector
geometry and event samples of Higgs
decays into four muons.

« Stage 0

— Only primary muons are pushed into
Urgent stack and all other primaries
and secondaries are pushed into
Waiting stack.

— All of four muons are tracked without
being bothered by EM showers caused
by delta-rays.

— Once Urgent stack becomes empty
(i.e. end of stage 0), number of hits in
muon counters are examined.

— Proceed to next stage only if sufficient
number of muons passed through
muon counters. Otherwise the event is

I aborted. _
- M.Asai (SLAC) 26

REOS5StackingAction
« Stage 1

— Only primary charged particles are
pushed into Urgent stack and all other
primaries and secondaries are pushed
into Waiting stack.

— All of primary charged particles are
tracked until they reach to the surface
of calorimeter. Tracks reached to the
calorimeter surface are suspended
and pushed back to Waiting stack.

— All charged primaries are tracked in
the tracking region without being
bothered by the showers in
calorimeter.

— At the end of stage 1, isolation of
muon tracks is examined.

Kernel 11 - M.Asai (SLAC)

REOS5StackingAction

« Stage 2

— Only tracks in "region of interest" are
pushed into Urgent stack and all other
tracks are killed.

— Showers are calculated only inside of
"region of interest".

Kernel 11 - M.Asai (SLAC)

