
Version 10.4-p02 

Kernel II 

Makoto Asai (SLAC) 
Geant4 Tutorial Course 



Contents 

•  User limits 
•  Attaching user information to G4 classes 
•  Fast simulation (a.k.a. shower parameterization) 
•  Stacking mechanism 
 

Kernel II - M.Asai (SLAC) 2 



Version 10.4-p02 

User limits 



G4UserLimits 
•  User limits are artificial limits affecting to the tracking. 

G4UserLimits(G4double ustepMax = DBL_MAX, 
             G4double utrakMax = DBL_MAX, 
             G4double utimeMax = DBL_MAX, 
            G4double uekinMin = 0., 
            G4double urangMin = 0. ); 

–  fMaxStep;        // max allowed Step size in this volume  
–  fMaxTrack;       // max total track length 
–  fMaxTime;        // max global time 
–  fMinEkine;       // min kinetic energy remaining (only for charged particles) 
–  fMinRange;      // min remaining range (only for charged particles) 
Blue : affecting to step 
Red : affecting to track 

•  You can set user limits to logical volume and/or to a region.  
–  User limits assigned to logical volume do not propagate to daughter volumes. 
–  User limits assigned to region propagate to daughter volumes unless 

daughters belong to another region. 
–  If both logical volume and associated region have user limits, those of logical 

volume win.	 Kernel II - M.Asai (SLAC) 4 



Processes co-working with G4UserLimits 
•  In addition to instantiating G4UserLimits and setting it to logical volume or 

region, you have to assign the following process(es) to particle types you want to 
affect. 

•  Limit to step 

fMaxStep : max allowed Step size in this volume  

–  G4StepLimiter process must be defined to affected particle types.  

–  This process limits a step, but it does not kill a track. 

•  Limits to track 

fMaxTrack : max total track length 

fMaxTime : max global time 

fMinEkine : min kinetic energy (only for charged particles) 

fMinRange : min remaining range (only for charged particles) 

–  G4UserSpecialCuts process must be defined to affected particle types.  

–  This process limits a step and kills the track when the track comes to one of 
these limits. Step limitation occurs only for the final step. 

Kernel II - M.Asai (SLAC) 5 



Version 10.4-p02 

Attaching user information to some kernel classes 



Attaching user information 

•  Abstract classes 

–  You can use your own class derived from provided base class 

–  G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint 

•  Concrete classes 

–  You can attach a user information class object 

•  G4Event - G4VUserEventInformation 

•  G4Track - G4VUserTrackInformation 

•  G4PrimaryVertex - G4VUserPrimaryVertexInformation 

•  G4PrimaryParticle - G4VUserPrimaryParticleInformation 

•  G4Region - G4VUserRegionInformation 

–  User information class object is deleted when associated Geant4 class 
object is deleted. 

Kernel II - M.Asai (SLAC) 7 



Trajectory and trajectory point 

•  Trajectory and trajectory point class objects persist until the end of an event. 

•  G4VTrajectory is the abstract base class to represent a trajectory, and 
G4VTrajectoryPoint is the abstract base class to represent a point which makes 

up the trajectory. 

–  In general, trajectory class is expected to have a vector of trajectory points. 

•  Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as 

defaults. These classes keep only the most common quantities. 

–  If the you want to keep some additional information, you are encouraged to 

implement your own concrete classes deriving from G4VTrajectory and 

G4VTrajectoryPoint base classes. 

–  Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base 

classes unless you are sure not to add any additional data member.  

•  Source of memory leak 

Kernel II - M.Asai (SLAC) 8 



Creation of trajectories 

•  Naïve creation of trajectories occasionally causes a memory consumption 
concern, especially for high energy EM showers. 

•  In UserTrackingAction, you can switch on/off the creation of a trajectory for the 
particular track. 

 
void MyTrackingAction 
          ::PreUserTrackingAction(const G4Track* aTrack) 
{ 
  if(...) 
  { fpTrackingManager->SetStoreTrajectory(true); } 
  else 
  { fpTrackingManager->SetStoreTrajectory(false); } 
} 
 
•  If you want to use user-defined trajectory, object should be instantiated in this 

method and set to G4TrackingManager by SetTrajectory() method. 
 
 fpTrackingManager->SetTrajectory(new MyTrajectory(…)); 

Kernel II - M.Asai (SLAC) 9 



Bookkeeping issues 

•  Connection from G4PrimaryParticle to G4Track 

G4int G4PrimaryParticle::GetTrackID() 

–  Returns the track ID if this primary particle had been converted into G4Track, 

otherwise -1. 

•  Both for primaries and pre-assigned decay products 

•  Connection from G4Track to G4PrimaryParticle 

G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle() 

–  Returns the pointer of G4PrimaryParticle object if this track was defined as a 
primary or a pre-assigned decay product, otherwise null. 

•  G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and 
G4VUserTrackInformation may be used for storing additional information. 

–  Information in UserTrackInformation should be then copied to user-defined 

trajectory class, so that such information is kept until the end of the event. 

Kernel II - M.Asai (SLAC) 10 



Examples/extended/ 
runAndEvent/RE01 

•  An example for connecting 
G4PrimaryParticle, G4Track, hits 
and trajectories, by utilizing 
G4VUserTrackInformation and 
G4VUserRegionInformation.  

•  SourceTrackID means the         
ID of a track which gets            
into calorimeter.  

•  PrimaryTrackID is copied           to 
UserTrackInformation             of 
daughter tracks. 

•  SourceTrackID is updated for 
secondaries born in tracker,  
while just copied in calorimeter. 

Kernel II - M.Asai (SLAC) 11 

PrimaryTrackID = 1 
SourceTrackID = 4 

PrimaryTrackID = 1 
SourceTrackID = 1 

RE01TrackInformation 

PrimaryTrackID = 2 
SourceTrackID = 2 

PrimaryTrackID = 1 
SourceTrackID = 1 

PrimaryTrackID = 1 
SourceTrackID = 3 

PrimaryTrackID = 1 
SourceTrackID = 1 PrimaryTrackID = 1 

SourceTrackID = 1 

PrimaryTrackID = 1 
SourceTrackID = 4 PrimaryTrackID = 1 

SourceTrackID = 4 PrimaryTrackID = 1 
SourceTrackID = 4 



Examples/extended/runAndEvent/
RE01	

Kernel II - M.Asai (SLAC) 12 

Trajectory of track6782 

Tracker hits of track6782 

Calorimeter hits of track6782 

Energy deposition includes not only 
muon itself but also all secondary 

EM showers started inside the 
calorimeter. 



RE01RegionInformation 

•  RE01 example has three regions, i.e. default world region, tracker region and 
calorimeter region. 
–  Each region has its unique object of RE01RegionInformation class. 

 
class RE01RegionInformation : public G4VUserRegionInformation 
{ 
  … 
  public: 
   G4bool IsWorld() const; 
   G4bool IsTracker() const; 
   G4bool IsCalorimeter() const; 
  … 
}; 
 
•  Through step->preStepPoint->physicalVolume->logicalVolume->region-> 

regionInformation, you can easily identify in which region the current step 
belongs. 
–  Don’t use volume name to identify. 

Kernel II - M.Asai (SLAC) 13 



Use of RE01RegionInformation 

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep) 
{ // Suspend a track if it is entering into the calorimeter 
 
  // get region information 
  G4StepPoint* thePrePoint = theStep->GetPreStepPoint(); 
  G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume(); 
  RE01RegionInformation* thePreRInfo 
   = (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation()); 
  G4StepPoint* thePostPoint = theStep->GetPostStepPoint(); 
  G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume(); 
  RE01RegionInformation* thePostRInfo 
   = (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation()); 
 
  // check if it is entering to the calorimeter volume 
  if( !(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()) ) 
  { theTrack->SetTrackStatus(fSuspend); } 
} 
 

Kernel II - M.Asai (SLAC) 14 



Version 10.4-p02 

Fast simulation 
(a.k.a. Shower parameterization) 



Fast simulation - Generalities 

•  Fast Simulation, also called as shower parameterization, is a shortcut to the 

"ordinary" tracking. 

•  Fast Simulation allows you to take over the tracking and implement your own 

"fast" physics and detector response. 

•  The classical use case of fast simulation is the shower parameterization where 

the typical several thousand steps per GeV computed by the tracking are 

replaced by a few ten of energy deposits per GeV. 

•  Parameterizations are generally experiment dependent. Geant4 provides a 

convenient framework and also one concrete parameterization G4Flash. 

 

Kernel II - M.Asai (SLAC) 16 



Parameterization features 

•  Parameterizations take place in an 

envelope. An envelope is a region, 

that is typically a mother volume of 

a sub-system or of a major module 

of such a sub-system. 

•  Parameterizations are often  

dependent to particle types and/or 

may be applied only to some kinds 

of particles. 

•  They are often not applied in 

complicated regions. 

µ	

e 

Kernel II - M.Asai (SLAC) 17 



Models and envelope 
•  Concrete models are bound to the envelope 

through a G4FastSimulationManager object. 

•  This allows several models to be bound to one 

envelope. 

•  The envelope is simply a G4Region which has 
G4FastSimulationManager. 

•  All [grand[…]]daughter volumes will be sensitive to 
the parameterizations. 

•  A model may returns back to the "ordinary" 

tracking the new state of G4Track after 

parameterization (alive/killed, new position, new 

momentum, etc.) and eventually adds secondaries 

(e.g. punch-through) created by the 

parameterization. 

G4FastSimulationManager 

ModelForElectrons 

ModelForPions 

« envelope » 
(G4Region) 

G4LogicalVolume 

Kernel II - M.Asai (SLAC) 18 



Fast Simulation 

•  The Fast Simulation components are 
indicated in white. 

•  When the G4Track comes in an envelope,  
     the G4FastSimulationManagerProcess  
     looks for a G4FastSimulationManager. 
•  If one exists, at the beginning of each step 

in the envelope, each model is asked for a 
trigger. 

•  In case a trigger is issued, the model is 
applied at the point the G4track is. 

•  Otherwise, the tracking proceeds with a 
normal tracking. 

G4FastSimulationManager 

ModelForElectrons 

ModelForPions 

G4LogicalVolume 

Multiple Scattering 

G4Transportation 

G4FastSimulationManagerProcess 

Process xxx 

G4Track 

G4ProcessManager 

Placements 

Envelope 
(G4LogicalVolume) 

Kernel II - M.Asai (SLAC) 19 



Version 10.4-p02 

Stack management 



Track stacks in Geant4 

•  By default, Geant4 has three track stacks. 
–  "Urgent", "Waiting" and "PostponeToNextEvent" 
–  Each stack is a simple "last-in-first-out" stack.  
–  User can arbitrary increase the number of stacks. 

•  ClassifyNewTrack() method of UserStackingAction decides which stack each 
newly storing track to be stacked (or to be killed). 
–  By default, all tracks go to Urgent stack. 

•  A Track is popped up only from Urgent stack. 
•  Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to 

Urgent stack. 
–  And NewStage() method of UsetStackingAction is invoked. 

•  Utilizing more than one stacks, user can control the priorities of processing 
tracks without paying the overhead of "scanning the highest priority track". 
–  Proper selection/abortion of tracks/events with well designed stack 

management provides significant efficiency increase of the entire simulation. 

Kernel II - M.Asai (SLAC) 21 



Stacking mechanism 

Kernel II - M.Asai (SLAC) 22 

Event Manager 

Tracking 
Manager 

Stacking 
Manager 

User Stacking 
Action 

Urgent 
Stack 

Waiting 
Stack 

Postpone To  
Next Event 

Stack 

Push 
Pop 

Push 

Push 

Push 

Pop 

Classify 

secondary  
and suspended 

tracks 

Process 
One 
Track 

primary 
tracks 

RIP 

Deleted 

Transfer 

NewStage 
Urgent 
Stack 

Waiting 
Stack 

Temporary 
Stack 

Reclassify 

Pop 

End Of 
Event 

Postpone To  
Next Event 

Stack 

Transfer 

Prepare 
New Event 



G4UserStackingAction 

•  User has to implement three methods. 
•  G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*) 

–  Invoked every time a new track is pushed to G4StackManager. 
–  Classification 

•  fUrgent - pushed into Urgent stack 
•  fWaiting - pushed into Waiting stack 
•  fPostpone - pushed into PostponeToNextEvent stack 
•  fKill - killed 

•  void NewStage() 
–  Invoked when Urgent stack becomes empty and all tracks in Waiting stack 

are transferred to Urgent stack. 
–  All tracks which have been transferred from Waiting stack to Urgent stack 

can be reclassified by invoking stackManager->ReClassify() 
•  void PrepareNewEvent() 

–  Invoked at the beginning of each event for resetting the classification 
scheme.  

Kernel II - M.Asai (SLAC) 23 



Tips of stacking manipulations  

•  Classify all secondaries as fWaiting until Reclassify() method is invoked.  
–  You can simulate all primaries before any secondaries. 

•  Classify secondary tracks below a certain energy as fWaiting until Reclassify() 
method is invoked.  
–  You can roughly simulate the event before being bothered by low energy 

EM showers. 
•  Suspend a track on its fly. Then this track and all of already generated 

secondaries are pushed to the stack. 
–  Given a stack is "last-in-first-out”, secondaries are popped out prior to the 

original suspended track. 
–  Quite effective for Cherenkov lights 

•  Suspend all tracks that are leaving from a region, and classify these suspended 
tracks as fWaiting until Reclassify() method is invoked.  
–  You can simulate all tracks in this region prior to other regions. 
–  Note that some back splash tracks may come back into this region later. 

Kernel II - M.Asai (SLAC) 24 



Set the track status 

•  In UserSteppingAction, user can change the status of a track. 
 
void MySteppingAction::UserSteppingAction 
                        (const G4Step * theStep) 
{ 
  G4Track* theTrack = theStep->GetTrack(); 
  if(…) theTrack->SetTrackStatus(fSuspend); 
} 
 
•  If a track is killed in UserSteppingAction, physics quantities of the track (energy, 

charge, etc.) are not conserved but completely lost. 

Kernel II - M.Asai (SLAC) 25 



RE05StackingAction 

•  RE05 has simplified collider detector 
geometry and event samples of Higgs 
decays into four muons. 

•  Stage 0 
–  Only primary muons are pushed into 

Urgent stack and all other primaries 
and secondaries are pushed into 
Waiting stack. 

–  All of four muons are tracked without 
being bothered by EM showers caused 
by delta-rays. 

–  Once Urgent stack becomes empty 
(i.e. end of stage 0), number of hits in 
muon counters are examined. 

–  Proceed to next stage only if sufficient 
number of muons passed through 
muon counters. Otherwise the event is 
aborted. 

Kernel II - M.Asai (SLAC) 26 



RE05StackingAction 
•  Stage 1 

–  Only primary charged particles are 
pushed into Urgent stack and all other 
primaries and secondaries are pushed 
into Waiting stack. 

–  All of primary charged particles are 
tracked until they reach to the surface 
of calorimeter. Tracks reached to the 
calorimeter surface are suspended 
and pushed back to Waiting stack. 

–  All charged primaries are tracked in 
the tracking region without being 
bothered by the showers in 
calorimeter. 

–  At the end of stage 1, isolation of 
muon tracks is examined. 

Kernel II - M.Asai (SLAC) 27 



RE05StackingAction 

•  Stage 2 

–  Only tracks in "region of interest" are 
pushed into Urgent stack and all other 
tracks are killed. 

–  Showers are calculated only inside of 
"region of interest". 

 

Kernel II - M.Asai (SLAC) 28 


