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User limits 



G4UserLimits 
•  User limits are artificial limits affecting to the tracking. 

G4UserLimits(G4double ustepMax = DBL_MAX, 
             G4double utrakMax = DBL_MAX, 
             G4double utimeMax = DBL_MAX, 
            G4double uekinMin = 0., 
            G4double urangMin = 0. ); 

–  fMaxStep;        // max allowed Step size in this volume  
–  fMaxTrack;       // max total track length 
–  fMaxTime;        // max global time 
–  fMinEkine;       // min kinetic energy remaining (only for charged particles) 
–  fMinRange;      // min remaining range (only for charged particles) 
Blue : affecting to step 
Red : affecting to track 

•  You can set user limits to logical volume and/or to a region.  
–  User limits assigned to logical volume do not propagate to daughter volumes. 
–  User limits assigned to region propagate to daughter volumes unless 

daughters belong to another region. 
–  If both logical volume and associated region have user limits, those of logical 
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Processes co-working with G4UserLimits 
•  In addition to instantiating G4UserLimits and setting it to logical volume or 

region, you have to assign the following process(es) to particle types you want to 
affect. 

•  Limit to step 

fMaxStep : max allowed Step size in this volume  

–  G4StepLimiter process must be defined to affected particle types.  

–  This process limits a step, but it does not kill a track. 

•  Limits to track 

fMaxTrack : max total track length 

fMaxTime : max global time 

fMinEkine : min kinetic energy (only for charged particles) 

fMinRange : min remaining range (only for charged particles) 

–  G4UserSpecialCuts process must be defined to affected particle types.  

–  This process limits a step and kills the track when the track comes to one of 
these limits. Step limitation occurs only for the final step. 
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Attaching user information to some kernel classes 



Attaching user information 

•  Abstract classes 

–  You can use your own class derived from provided base class 

–  G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint 

•  Concrete classes 

–  You can attach a user information class object 

•  G4Event - G4VUserEventInformation 

•  G4Track - G4VUserTrackInformation 

•  G4PrimaryVertex - G4VUserPrimaryVertexInformation 

•  G4PrimaryParticle - G4VUserPrimaryParticleInformation 

•  G4Region - G4VUserRegionInformation 

–  User information class object is deleted when associated Geant4 class 
object is deleted. 
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Trajectory and trajectory point 

•  Trajectory and trajectory point class objects persist until the end of an event. 

•  G4VTrajectory is the abstract base class to represent a trajectory, and 
G4VTrajectoryPoint is the abstract base class to represent a point which makes 

up the trajectory. 

–  In general, trajectory class is expected to have a vector of trajectory points. 

•  Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as 

defaults. These classes keep only the most common quantities. 

–  If the you want to keep some additional information, you are encouraged to 

implement your own concrete classes deriving from G4VTrajectory and 

G4VTrajectoryPoint base classes. 

–  Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base 

classes unless you are sure not to add any additional data member.  

•  Source of memory leak 
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Creation of trajectories 

•  Naïve creation of trajectories occasionally causes a memory consumption 
concern, especially for high energy EM showers. 

•  In UserTrackingAction, you can switch on/off the creation of a trajectory for the 
particular track. 

 
void MyTrackingAction 
          ::PreUserTrackingAction(const G4Track* aTrack) 
{ 
  if(...) 
  { fpTrackingManager->SetStoreTrajectory(true); } 
  else 
  { fpTrackingManager->SetStoreTrajectory(false); } 
} 
 
•  If you want to use user-defined trajectory, object should be instantiated in this 

method and set to G4TrackingManager by SetTrajectory() method. 
 
 fpTrackingManager->SetTrajectory(new MyTrajectory(…)); 
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Bookkeeping issues 

•  Connection from G4PrimaryParticle to G4Track 

G4int G4PrimaryParticle::GetTrackID() 

–  Returns the track ID if this primary particle had been converted into G4Track, 

otherwise -1. 

•  Both for primaries and pre-assigned decay products 

•  Connection from G4Track to G4PrimaryParticle 

G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle() 

–  Returns the pointer of G4PrimaryParticle object if this track was defined as a 
primary or a pre-assigned decay product, otherwise null. 

•  G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and 
G4VUserTrackInformation may be used for storing additional information. 

–  Information in UserTrackInformation should be then copied to user-defined 

trajectory class, so that such information is kept until the end of the event. 
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Examples/extended/ 
runAndEvent/RE01 

•  An example for connecting 
G4PrimaryParticle, G4Track, hits 
and trajectories, by utilizing 
G4VUserTrackInformation and 
G4VUserRegionInformation.  

•  SourceTrackID means the         
ID of a track which gets            
into calorimeter.  

•  PrimaryTrackID is copied           to 
UserTrackInformation             of 
daughter tracks. 

•  SourceTrackID is updated for 
secondaries born in tracker,  
while just copied in calorimeter. 
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PrimaryTrackID = 1 
SourceTrackID = 4 

PrimaryTrackID = 1 
SourceTrackID = 1 

RE01TrackInformation 

PrimaryTrackID = 2 
SourceTrackID = 2 

PrimaryTrackID = 1 
SourceTrackID = 1 

PrimaryTrackID = 1 
SourceTrackID = 3 

PrimaryTrackID = 1 
SourceTrackID = 1 PrimaryTrackID = 1 

SourceTrackID = 1 

PrimaryTrackID = 1 
SourceTrackID = 4 PrimaryTrackID = 1 

SourceTrackID = 4 PrimaryTrackID = 1 
SourceTrackID = 4 



Examples/extended/runAndEvent/
RE01	
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Trajectory of track6782 

Tracker hits of track6782 

Calorimeter hits of track6782 

Energy deposition includes not only 
muon itself but also all secondary 

EM showers started inside the 
calorimeter. 



RE01RegionInformation 

•  RE01 example has three regions, i.e. default world region, tracker region and 
calorimeter region. 
–  Each region has its unique object of RE01RegionInformation class. 

 
class RE01RegionInformation : public G4VUserRegionInformation 
{ 
  … 
  public: 
   G4bool IsWorld() const; 
   G4bool IsTracker() const; 
   G4bool IsCalorimeter() const; 
  … 
}; 
 
•  Through step->preStepPoint->physicalVolume->logicalVolume->region-> 

regionInformation, you can easily identify in which region the current step 
belongs. 
–  Don’t use volume name to identify. 
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Use of RE01RegionInformation 

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep) 
{ // Suspend a track if it is entering into the calorimeter 
 
  // get region information 
  G4StepPoint* thePrePoint = theStep->GetPreStepPoint(); 
  G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume(); 
  RE01RegionInformation* thePreRInfo 
   = (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation()); 
  G4StepPoint* thePostPoint = theStep->GetPostStepPoint(); 
  G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume(); 
  RE01RegionInformation* thePostRInfo 
   = (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation()); 
 
  // check if it is entering to the calorimeter volume 
  if( !(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()) ) 
  { theTrack->SetTrackStatus(fSuspend); } 
} 
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Fast simulation 
(a.k.a. Shower parameterization) 



Fast simulation - Generalities 

•  Fast Simulation, also called as shower parameterization, is a shortcut to the 

"ordinary" tracking. 

•  Fast Simulation allows you to take over the tracking and implement your own 

"fast" physics and detector response. 

•  The classical use case of fast simulation is the shower parameterization where 

the typical several thousand steps per GeV computed by the tracking are 

replaced by a few ten of energy deposits per GeV. 

•  Parameterizations are generally experiment dependent. Geant4 provides a 

convenient framework and also one concrete parameterization G4Flash. 
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Parameterization features 

•  Parameterizations take place in an 

envelope. An envelope is a region, 

that is typically a mother volume of 

a sub-system or of a major module 

of such a sub-system. 

•  Parameterizations are often  

dependent to particle types and/or 

may be applied only to some kinds 

of particles. 

•  They are often not applied in 

complicated regions. 

µ	

e 
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Models and envelope 
•  Concrete models are bound to the envelope 

through a G4FastSimulationManager object. 

•  This allows several models to be bound to one 

envelope. 

•  The envelope is simply a G4Region which has 
G4FastSimulationManager. 

•  All [grand[…]]daughter volumes will be sensitive to 
the parameterizations. 

•  A model may returns back to the "ordinary" 

tracking the new state of G4Track after 

parameterization (alive/killed, new position, new 

momentum, etc.) and eventually adds secondaries 

(e.g. punch-through) created by the 

parameterization. 

G4FastSimulationManager 

ModelForElectrons 

ModelForPions 

« envelope » 
(G4Region) 

G4LogicalVolume 
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Fast Simulation 

•  The Fast Simulation components are 
indicated in white. 

•  When the G4Track comes in an envelope,  
     the G4FastSimulationManagerProcess  
     looks for a G4FastSimulationManager. 
•  If one exists, at the beginning of each step 

in the envelope, each model is asked for a 
trigger. 

•  In case a trigger is issued, the model is 
applied at the point the G4track is. 

•  Otherwise, the tracking proceeds with a 
normal tracking. 

G4FastSimulationManager 

ModelForElectrons 

ModelForPions 

G4LogicalVolume 

Multiple Scattering 

G4Transportation 

G4FastSimulationManagerProcess 

Process xxx 

G4Track 

G4ProcessManager 

Placements 

Envelope 
(G4LogicalVolume) 
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Stack management 



Track stacks in Geant4 

•  By default, Geant4 has three track stacks. 
–  "Urgent", "Waiting" and "PostponeToNextEvent" 
–  Each stack is a simple "last-in-first-out" stack.  
–  User can arbitrary increase the number of stacks. 

•  ClassifyNewTrack() method of UserStackingAction decides which stack each 
newly storing track to be stacked (or to be killed). 
–  By default, all tracks go to Urgent stack. 

•  A Track is popped up only from Urgent stack. 
•  Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to 

Urgent stack. 
–  And NewStage() method of UsetStackingAction is invoked. 

•  Utilizing more than one stacks, user can control the priorities of processing 
tracks without paying the overhead of "scanning the highest priority track". 
–  Proper selection/abortion of tracks/events with well designed stack 

management provides significant efficiency increase of the entire simulation. 
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Stacking mechanism 

Kernel II - M.Asai (SLAC) 22 
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G4UserStackingAction 

•  User has to implement three methods. 
•  G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*) 

–  Invoked every time a new track is pushed to G4StackManager. 
–  Classification 

•  fUrgent - pushed into Urgent stack 
•  fWaiting - pushed into Waiting stack 
•  fPostpone - pushed into PostponeToNextEvent stack 
•  fKill - killed 

•  void NewStage() 
–  Invoked when Urgent stack becomes empty and all tracks in Waiting stack 

are transferred to Urgent stack. 
–  All tracks which have been transferred from Waiting stack to Urgent stack 

can be reclassified by invoking stackManager->ReClassify() 
•  void PrepareNewEvent() 

–  Invoked at the beginning of each event for resetting the classification 
scheme.  
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Tips of stacking manipulations  

•  Classify all secondaries as fWaiting until Reclassify() method is invoked.  
–  You can simulate all primaries before any secondaries. 

•  Classify secondary tracks below a certain energy as fWaiting until Reclassify() 
method is invoked.  
–  You can roughly simulate the event before being bothered by low energy 

EM showers. 
•  Suspend a track on its fly. Then this track and all of already generated 

secondaries are pushed to the stack. 
–  Given a stack is "last-in-first-out”, secondaries are popped out prior to the 

original suspended track. 
–  Quite effective for Cherenkov lights 

•  Suspend all tracks that are leaving from a region, and classify these suspended 
tracks as fWaiting until Reclassify() method is invoked.  
–  You can simulate all tracks in this region prior to other regions. 
–  Note that some back splash tracks may come back into this region later. 
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Set the track status 

•  In UserSteppingAction, user can change the status of a track. 
 
void MySteppingAction::UserSteppingAction 
                        (const G4Step * theStep) 
{ 
  G4Track* theTrack = theStep->GetTrack(); 
  if(…) theTrack->SetTrackStatus(fSuspend); 
} 
 
•  If a track is killed in UserSteppingAction, physics quantities of the track (energy, 

charge, etc.) are not conserved but completely lost. 
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RE05StackingAction 

•  RE05 has simplified collider detector 
geometry and event samples of Higgs 
decays into four muons. 

•  Stage 0 
–  Only primary muons are pushed into 

Urgent stack and all other primaries 
and secondaries are pushed into 
Waiting stack. 

–  All of four muons are tracked without 
being bothered by EM showers caused 
by delta-rays. 

–  Once Urgent stack becomes empty 
(i.e. end of stage 0), number of hits in 
muon counters are examined. 

–  Proceed to next stage only if sufficient 
number of muons passed through 
muon counters. Otherwise the event is 
aborted. 
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RE05StackingAction 
•  Stage 1 

–  Only primary charged particles are 
pushed into Urgent stack and all other 
primaries and secondaries are pushed 
into Waiting stack. 

–  All of primary charged particles are 
tracked until they reach to the surface 
of calorimeter. Tracks reached to the 
calorimeter surface are suspended 
and pushed back to Waiting stack. 

–  All charged primaries are tracked in 
the tracking region without being 
bothered by the showers in 
calorimeter. 

–  At the end of stage 1, isolation of 
muon tracks is examined. 
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RE05StackingAction 

•  Stage 2 

–  Only tracks in "region of interest" are 
pushed into Urgent stack and all other 
tracks are killed. 

–  Showers are calculated only inside of 
"region of interest". 
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