Short Guide to Choosing Your Physics Lists

Mihaly Novak (CERN, EP-SFT) Geant4 Tutorial at Lund University, Lund (Sweden), 3-7 September 2018 Geant4.10.4

Slides based on Dennis Wright (SLAC) & Vladimir Ivantchenko (CERN) lectures

OUTLINE

Recapitulation

• Reference physics lists. Physics list naming conventions.

Validation

RECAPITULATION

Recapitulation

• Physics list. Reference physics lists. Physics list naming conventions.

Validation

- o Hadronic. Electromagnetic.
- Example

Outline

Physics Lists:

Physics lists

Physics List is an object that is responsible to:

- o specify all the particles that will be used in the simulation application
- together with the list of physics processes assigned to each individual particles
- the user can give the list of particles and assign different set of processes to them
- o this will determine the "physics environment" of the simulation
- the user must have a good understanding of the physics required to describe properly the given problem
- omission of relevant particles and/or physics interactions could lead to poor modelling results
- omission of relevant particles and/or physics interactions could lead to poor modelling results

Reference Physics Lists:

"Production physics lists":

- these physics lists are used by large user groups like ATLAS, CMS, etc.
- o because of their importance, they are well-maintained and tested physics lists
- o they are changed, updated less frequently: very stable physics lists
- o they are extensively validated by the developers and the user communities
- FTFP_BERT, QGSP_BERT, QGSP_FTFP_BERT_EMV, FTFP_BERT_HP, QGSP_BIC_EMY, QGSP_BIC_HP, QBBC, Shielding

Caveats:

- these lists are provided as a "best guess" of the physics needed in some given use cases
- when a user decide to use them, the user is responsible for "validating" the physics for that given application
- it means adding (or removing) the appropriate physics, using the proper settings
- they are intended to give a starting point or template for the user physics list

Reference Physics Lists: naming convention

Some Hadronic options:		
o "QGS"	Quark Gluon String model (>~15 (GeV)
o "FTF"	FRITIOF String model (> ~5 G	eV)
o "BIC"	Binary Cascade model (<~10	GeV)
	"Deutini Ceceede medel (10	()

- o "BERT" Bertini Cascade model (<~10 GeV)
- G4Precompound model used for de-excitation o "P"
- o "HP" High Precision neutron model (< ~20 MeV)

Some EM options:

- No suffix: standard EM i.e. the default G4EmStandardPhysics constructor
- "EMV" G4EmStandardPhysics_option1 CTR: HEP, fast but less precise
- "EMY" G4EmStandardPhysics_option3 CTR: medical, space sci., precise
- "EMZ" G4EmStandardPhysics_option4 CTR: most precise EM physics
- Name decoding: String(s)_Cascade_Neutron_EM
- The complete list of pre-packaged physics list with detailed description can be found in the documentation ("Guide for Physics Lists"):
- http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/ index.html

Reference Physics Lists: naming convention (example) G4

FTFP_BERT:

- Recommended by Geant4 developers for HEP applications
- Includes the standard EM physics i.e. G4EmStandardPhysics CTR
- "FTF" FRITIOF string model (> 4 GeV)
- o "BERT" Bertini Cascade model (< 5 GeV)
- "P" G4Precompound model used for de-excitation

■ QGSP_BIC_HP(_EMZ):

- Recommended for medical applications (experimental QGSP_BIC_AllHP)
- o "QGS" Quark Gluon String model (> 12 GeV)
- o "FTF" FRITIOF String model (9.5 25 GeV)
- "P" G4Precompound model used for de-excitation
- o "BIC" Binary Cascade model (200 MeV 9.9 GeV)
- "HP" High Precision neutron model (< ~20 MeV)
- "EMZ" G4EmStandardPhysics_option4 CTR (or EMY that's a bit less precise)

Example: using reference physics lists with EM option

- a QGSP_BIC_HP reference physics list, including all the above mentioned CTRs is available (but with the standard EM physics)
- the G4PhysListFactory knows everything about the available reference lists
- o moreover, it makes possible to replace their EM option with a new one

```
212
      // IM YOUR MAIN APPLICATION
213
      11
214
        // create your run manager
215
      #ifdef G4MULTITHREADED
216
        G4MTRunManager + runManager = new G4MTRunManager;
        // number of threads can be defined via macro command
217
        runManager->SetNumberOfThreads(4);
218
219
      #else
220
        G4RunManager* runManager = new G4RunManager;
221
      #endif
222
        11
223
        // create a physics list factory object that knows
224
        // everything about the available reference physics lists
225
        // and can replace their default EM option
        G4PhysListFactory physListFactory;
226
        // obtain the QGSP_BIC_HP_EMZ reference physics lists
227
        // which is the QGSP_BIC_HP refrence list with opt4 EM
228
        const G4String plName = "QGSP_BIC_HP_EMZ";
229
        G4VModularPhysicsList* pList = physListFactory.GetReferencePhysList(plName);
230
        // (check that pList is not nullptr, that I skipp now)
231
232
        // register your physics list in the run manager
233
        runManager->SetUserInitialization(pList);
234
        // register further mandatory objects i.e. Detector and Primary-generator
235
        . . .
```

Geant4 Tutorial at Lund University, Lund (Sweden), 3-7 September 2018

G4

Choosing your physics list:

Recommendation:

- Ideal situation: the user(s) have a good understanding of the physics relevant for a given application
 - + the user can either build its own physics list or decide to use a pre-defined one
 - + the chosen physics list needs to be validated for the given application
 - + can be done either by the user or by someone else in case of some reference lists
 - during the validation procedure, some parts of the physics list might be changed add physics, remove physics, change settings, etc.
- The given application belongs to a well defined application area (e.g. medical applications)
 - the user can choose the reference physics list recommended for the given application area as a staring point
 - + the chosen physics list needs to be validated for the given application (same as above)
- Something that always works (but time consuming):
 - + the user can take the most accurate physics settings (e.g. opt4 for EM)
 - + run some simulation with lower statistics to obtain the most accurate result
 - then the user can take a less accurate but fast physics setting (e.g. opt0 for EM) as a starting point and obtain some simulation results
 - then granularly extend the initial physics list by using the accurate results as reference

Outline

VALIDATION

Recapitulation

o Reference physics lists. Physics list naming conventions.

Validation

Validation

Validation:

Using the Geant4 validation results:

- you must choose a physics list based on how well its component processes and models perform in your specific case:
 - physics accuracy versus CPU performance
- Geant4 provides validation (i.e. comparison to data) for most of its physics codes
 - validation is a continuing task, performed at least as often as each release
 - more validation tests added as time goes on
- To access these comparisons, go to Geant4 website:
 - Geant4 website: https://geant4.web.cern.ch
 - Click: Validation of Geant4
 - Then choose <u>Validation and Testing</u> from the menu
 - We will use the **Geant4 GRID-based testing results portal** today

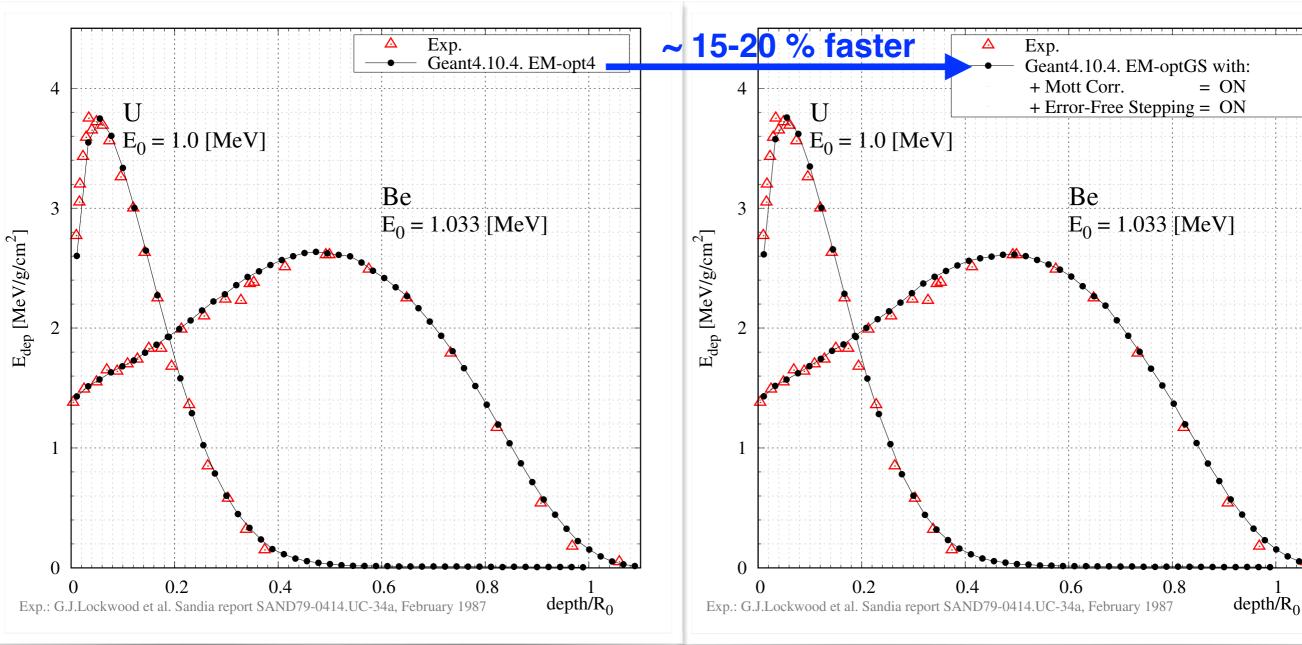
EXAMPLE

Recapitulation

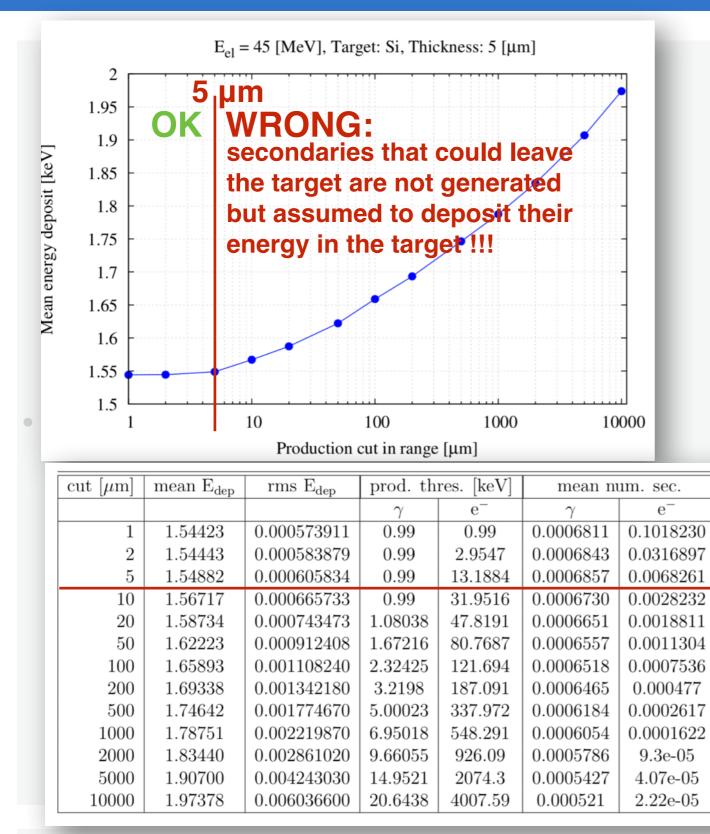
• Reference physics lists. Physics list naming conventions.

Validation

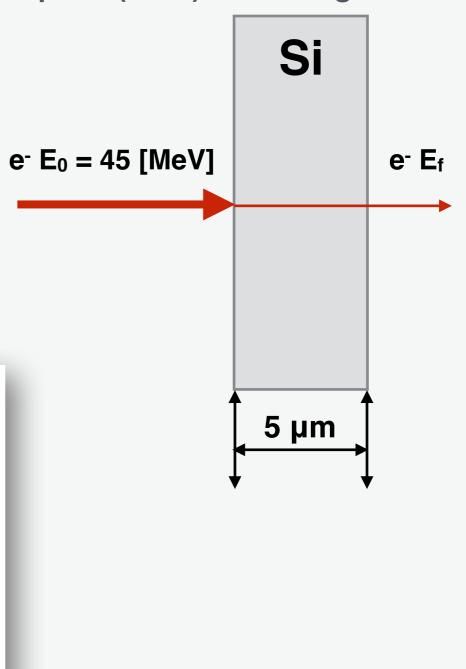
Example:



- Suppose you want to simulate (EM) depth dose profile:
- simulation of energy deposit by energetic electrons as a function of the penetration depth (both lighter and heavier materials)
- we will use the Geant4 validation results from <u>Geant4 GRID-based testing</u> results portal, especially test37 to choose our initial physics list to start with
- then we will adjust our initial reference physics list to achieve maximum physics performance while improving the computation efficiency


Example:

Example


G4

Secondary production threshold: never forget!

Compute the mean of the energy deposit (E_f-E₀) in the target

Geant4 Tutorial at Lund University, Lund (Sweden), 3-7 September 2018