Leaving academia

Doktoranddag

Nele Boelaert

From physics to finance

- 2017 now: senior quant at Nykredit
- 2012 2017: (senior) software developer at SimCorp
- 2010 2012: postdoc at NBI
- 2006 2010: PhD in experimental particle physics, Lund University
- 2001 2006: Master of Engineering, Ghent University Belgium

Nele Boelaert	
Dijet Angula	r
Distribution	s in
Proton–Prot	.on
$\Delta t \sqrt{c} = 7 \text{ TeV and}$	$\sqrt{c} = 14$ To

Software developer at SimCorp

- SimCorp: ~1400 employees, that make, test, sell and support one software product: SimCorp Dimension
- Investment management software
- Headquartered in Copenhagen

SimCorp

Being a developer at SimCorp

- Most developing is done in APL: **A P**rogram **L**anguage
- Also C# (front ends)
- database layer (SQL)
- Learned programming languages and finance on the job
- Additional finance courses in own time

Duration Curr	ency Exposure	ions FX Mana	gement Or	der Outbox	Contract Delta vec	Compliance		ders	Excel simul	lation [[Details Ex	plain Price	Model Manag	ement S	itrategies								
Pivot #2	_																						
	AUD		CAD		CHF				EUR		GBP		JP	(SEK		SGD		USD		Grand Total	
	New %	New CID	New %	New CID	New %	NewCID	New %	New CTD	New %	New C	TD New	% Ne	ACID Ne	W %	New CTD	New %	New CID	New %	New CID	New %	New CTD	New %	New Ch
	0.00	0.0000	0.00	0.0000					2.00		0000	0.47	0.0007	0.00	0.0000			0.00	0.0000	1.05	0.0011	5.00	
Less than 1 year	0.00	0.0000	0.00	0.0000		0.0400		0.0000	3.98	0.0	0093	0.47	0.0007	0.00	0.0000	0.00	0.0000	0.00	0.0000	1.35	0.0011	5.80	0.0
1 - 3 years	0.08	0.0019	0.00	0.0000	2.81	0.0466	0.00	0.0000	12.73	0.2	2498	0.00	0.0000	3.02	0.0701	0.00	0.0000	0.00	0.0000	6.55	0.13/3	25.20	0.5
3 - 5 years	0.00	0.0000	0.00	0.0000			0.00	0.0000	9.76	0.4	4051	0.00	0.0000	2.67	0.0904	0.00	0.0000	0.00	0.0000	4.5/	0.1921	17.00	0.6
5 - 10 years	0.00	0.0000	0.00	0.0000			0.00	0.0000	5.41	0.8	5151	5.85	0.3998	0.87	0.0677	0.00	0.0000	0.00	0.0000	9.51	0.7489	21.64	1.7
10 - 15 years			4.22	0.5152					15.54	4 1.8	8284	0.00	0.0000	1.43	0.1637			0.00	0.0000	5.85	0.7088	27.04	3.2
More than 15 y							0.00	0.0000	3.32	2 0.5	5225	0.00	0.0000	0.00	0.0000					0.00	0.0000	3.32	0.9
Grand Total	0.08	0.0019	4.22	0.5152	2.81	0.0488	0.00	0.0000	50.74	4 3.5	5303	6.32	0.4005	7.99	0.3918	0.00	0.0000	0.00	0.0000	27.83	1.7882	100.00	6.6
Security p	ame			V Mahurity	A Cov	Duration	1 2nd b	ect BM 9	6 CTD	9/.	Nor	vinal .	RM Ret	Sim no		Sim MVal	Validati	oo Ne	ew CTD	New % DF	New nom	New Mile	alec
Decancy in	ant - Artemir	- World En	ed Income	Procuric Dynamic	, - ccy	* Duradion	999-	10		. 100 11	00 00		001000	0		2 872 (* diludu	011 144	6WCID	10010 /0 PT	. New nom.	02	627 C
	che - Arcentie	5 - World 11/	ed meome	Dynamic			D/NR	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			00.00		0.0	0	0	2,072,5	0		0.077	0.0	0 500.0	00	025,5.
🖲 Les	s than 1 yea	r					□ A-	-30	2.22 Q	0.011	5.98		35.0	1	-		0		0.011	5.8	0	5.	369.9
± 1 -	3 years						888	30	5.13 6	0.524 2	25.00		-10.9	4			0		0.508	25.2	0	23,	337,8
🕀 3 -	5 years						🗆 A+	15	. <i>35</i> 0	0.710 1	17.55		-2.3	4			0		0.688	17.0	0	15,	749,9
🕀 5 -	10 years						🗆 A-	23	<i>.66</i> 1	.787 2	22.34		-2.0	3			0		1.731	21.6	4	20,	046,5
> 🖂 🚡	10 - 15 year	s					C	37	7.75 2	2.919 2	24.71		-10.7	3		2,872,5	524		3.216	27.0	4	25,	047,8
52	CANADA-GOV	T CAN 5 3/4	06/01/29	01/06	5/2029 CAD	10.68	D/NR	• •	7.21 (D.108	1.01	935,80	13 0.7	7					0.105	0.9	8 935,8	303	908,8
53	CANADA-GOV	1 CAN 5 3/41	06/01/33	01/06	5/2033 CAD	12.67	D/NR	• •	1.23 (0.138	1.09	967,54	6 3.0	11	2,000,000	2,021,	46/ 🔍		0.410	3.2	4 2,967,5	046 2	:,999,3
54	US TREASURY	N/BTE2/90	10/15/30	15/05	2030 050	11.00	AAA		1.27 0	0.140	1.27	1,078,05	0 2.0	10	1,500,000	1,566,1	041		0.324	2.9	4 2,5/6,0 E 1,079,4	393 2	.,727,0 . 064 6
55	US TREASURY	N/B T 4 1/2 (12/15/36	15/02	2031 050	14 34	E 444		1 78 (0.157	1.19	1 784 59	9 83	18					0.155	1.1	6 1 784 9	107 I	,004,0
57	BTPS BTPS 5 1	/4 11/01/29	10100	01/11	/2029 EUR	10.71	E BBB		1.81 (0.320	2.99	2,183,19	2 1.7	5	500.000	613.8	818	•	0.381	3.5	6 2,683,1	92 3	1,293.9
58	BTPS BTPS 6 0	5/01/31		01/05	5/2031 EUR	11.15	E 888	•	2.51 (0.461	4.14	2,789,37	3 1.5	10		,			0.447	4.0	1 2,789,3	373 3	,712,4
59	FRANCE O.A.	1. FRTR 5 3/4	10/25/32	25/10)/2032 EUR	12.45	AA+	•	1.85 (0.380	3.05	1,755,46	2 1.3	11					0.369	2.9	6 1,755,4	162 2	,741,3
20	DELITSCHLAM	DED DED A	2/4 07/04/24	04/03	7/20124 FLID	14.25	IT DAND		1 84 1	n 433	3.04	1 973 00	1d 5 7	n					0.420	2.0	4 1 973 0	ina o	776.8
							888-	100	0.00 6	5.490 10	00.00		0.0	0		2,872,5	524		6.677	100.0	0	92,	523,5
imulations						ccet allocati	0.0																
Jinidiacions							011			111	1 1									1			
Security name			Nominal	▲ Stra	stegy	9 FO				â	Portfoli	o 🛦 Str	ategy	A	sset allocatio	n Limit mini	mum Limit r	naximum Be	enchmark	Actual distri	bution D	ifference to	Expos
JAPAN GOVT 2	D-YR JGB 2.2 0	3/20/28	-3,0	100,000 Glo	bal GOV1	Equities						FI Go	vernment		40.	00 3	5.00	45.00	40.00		100.00	60.00	92.6
SPANISH GOV'I	SPGB 6 01/31	29	-1,0	100,000 Glo	bal GOV1	Hixed In	tome			=	CL ART	FI Eur	ope		60.	00 5	55.00	65.00	60.00		59.87	-0.13	55,45
DIPODIPODI/	4 11/01/29 WP T 6 1/4 0F/	15/20	1.0	00,000 GIO	bal GOVI	Gov	rnmenc				CL ART	FI Am	ericas		30.	00 2	25.00	35.00	30.00		32.05	2.05	29,68
CANADA-GOVT CAN 5 3/4 06/01/33 2,000,000 Global GOVI				urope				CL ART	FI Asi	a/Pacific		10.	00	5.00	15.00	10.00		8.07	-1.93	7,479			
children dorr	4.110 071 007			,, alo	baraon		cia/Pacific				4												
					_		isia/Facilic	_		· ·	Due to filter	is and auth	orisations it n	hight only b	be a part of t	the portfolio(s	s) that is load	led. This mig	ht affect the	actual distribu	itions.		
(1				> C	ompliance Res	ults Assel	t allocation S	imulation P	ilter													
	1					_	_	_	_	_	_	_	_	Contrada	ah ahaala 17	107/2014 12.	20 E sieuda	kine/a) # 2	feilune 22 e		Ciucal Terrane	DM	Techi
h											_			× Late	secheck: 17	10/12014-12:	ser s sinula	con(s) = # 2	ranures, 28 p		nikau income		

PRIMES : $(\sim R \in R \circ . \times R)/R + 1 + 1R$

Being a developer at SimCorp

- Agile development Scrum framework: work closely together in small teams in blocks of 2 weeks
- Product Owners decide on what needs adding, you can only decide how
- 400 developers 1 code base: you need to understand first what is there, and then add to it/correct it.
- Shared code ownership
- **Code review**: get critical feedback!
- Test department (QA) will take your development to the limits and try to break it ^(C)
- Coding standards

Why was it fun at SimCorp

- Complicated and challenging code base; takes 1 year from being new to being productive
- Could start with no financial experience
- PhD's in demand: >50 % in my team had a PhD in natural sciences
- Nearly 100% a developer: no admin, fighting for grants
- You work as a team, on an existing code base, you can get help if needed
- Output: what you code is being used by clients
- Flexible hours/location

And less fun

- You can not always develop the system in a way you think is best
- Flexible hours/location but still expected to be reasonable about it
- No deeper physics

Working at Nykredit

- Wanted more mathematics so ended up taking courses on financial modelling (in my own time)
- Senior front office quantitative analyst (so-called quant)
- Nykredit: a small big bank (Denmark 3rd largest bank)
- Biggest mortgage provider in Denmark
- Just over 4.000 employees
- Company language is Danish

Bank for boligejere

Nykredit BoligBank er for dig, der gerne vil have det meste ud af det, du har – både nu og i fremtiden. Vi er daglig bank, boligfinansiering og opsparing i et, og du får rådgivning og overblik med udgangspunkt i hele din økonomi – også din bolig.

Nykredit

Work as a quant

- C++ "pricing" libraries that are used internally by the bank
- Python/Excel front end
- Database layer (SQL)

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S_t^2} + rS_t \frac{\partial V}{\partial S_t} - rV = 0.$$

- Partial differential equations that describe prices of financial products, given how the market looks today, and assuming that prices and rates have a stochastic component
- ... mixed with human emotions
- ... solved using finite difference techniques, Monte Carlo or binomial/trinomial trees
- The art: write fast software for colleagues (traders, risk managers, treasury) that don't always understand the mathematics nor have patience to do so

Being a quant at Nykredit

- Small quant team
- Our code repository = the Wild West \bigcirc
- My time is spent on:
 - Support: help colleagues that use our software when they get stuck
 - Drift: calibration jobs, online pricing, night jobs etc: continous processing of market data so we can calculate real-time prices
 - Planning enhancements (meetings)
 - Coding and new developments
- PhD's are in demand for quant jobs: analytical skills and programming experience
- Finance experience was a must at Nykredit, but bigger banks will hire PhD's with no finance background and train them

Quant job interview

- You throw a pair of fair dice.
- You win 100 SEK if the sum of the dice is 10
- You loose 10 SEK otherwise
- Do you want to play this game?

Quant job interview

- You throw a pair of fair dice.
- You win 100 SEK if the sum of the dice is 10
- You loose 10 SEK otherwise
- Do you want to play this game?

- Fair game: expected cost of the game = 0
- 6 x 6 = 36 outcomes. 3 combinations that make 10: (4,6), (5,5) and (6,4)
- Expected outcome = 100 SEK x 3/36 10 SEK x 33/36 = -1 /12
- Do not play this game!

Why it is fun at Nykredit

- Responsible for a very nice C++ library
- Develop software for colleagues that appreciate it
- A lot of freedom to make enhancements
- Can spend (working) time on courses and learning

And less fun

- When our "drift" jobs go down, people get angry
- Flexible hours/location only in emergencies
- Formal dress code

Literature & courses

- Finance Markets, Instruments & Investments Hans Byström: 1-day easy introduction
- Options, Futures, and Other Derivatives John Hull: standard work
- Financial Engineering And Risk Management, Part I and II: Coursera course by Columbia University
- To do:

https://www.coursera.org/specializations/de ep-learning

Finance teaser

- Cash flows
- Time value of money
- Aribtrage
- Fair prices

Cash flows

- E.g. loan
 - Borrow 1M today
 - Interest rate: 2.5%
 - Over 30 years
 - Every 3 monhts: pay interest + redemption (i.e. paying off the loan)
- Cash flow borrower (house owner) is inverse cash flow lender (bank or investor)
- Cash flows can be uncertain:
 - Borrower can go bankrupt
 - Loans can be with non-fixed interest rate that depends on the market in X years

Time value of money

• I have 1000 SEK today. I invest it at an annual rate of 5%. How much do I have in 10 years?

Future Value: $FV = 1000 \times (1 + 0.05)^{10} = 1629$

• How much is 1000 SEK in 10 years worth today?

Present Value: $PV = 1000 \times \frac{1}{(1+0.05)^{10}} = 614$

• The Future Value, **discounted** with the interest rate, gives the Present Value:

$$PV = \frac{1}{(1+r)^m} FV$$
• discount factor: $d_m = \frac{1}{(1+r)^m}$

Arbitrage

- Arbitrage: the simultaneous buying and selling of assets in different markets in order to take advantage of differing prices for the same asset.
- Finance theory is based on aribitrage-free pricing: the law of one price
- There is no free lunch: I cannot invest 0 SEK today, and be <u>100%</u> <u>certain</u> that I have earned 100 SEK in 1 year
- If a stock goes to 0, it can never be above 0 again. Otherwise, I could buy it at no cost today and sell it for a risk-free profit as soon as its value > 0.
- Reality: rare arbitrage possibilities do exist

No-arbitrage and loan rates

- How to determine a fair rate on a 30Y loan?
- NPV = Net Present Value (at T = 0): sum of all (future) cash flows, discounted to T = 0:

$$NPV = -C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \ldots + \frac{C_T}{(1+r)^T}$$

- $-C_0 = Initial Investment$ C = Cash Flow r = Discount RateT = Time
- The cash flows: C1,, CT: borrower pays interest and redemption (paying off the loan)
- No-aribtrage means: NPV = 0.
- Fair rate = choose interest rate so that the NPV of the loan equals 0
- Banks: will add a small **spread** to the fair rate to account for running costs

No-arbitrage example – forward rates

- Assume that today we know:
 - Return on 20Y investment = 2%
 - Return on 25Y investment = 2.5%
- Two investment schemes:

2.

- 1. Invest 100 SEK in a 25Y scheme. After 25Y: $100(1 + 0.025)^{25}$
 - Invest 100 SEK in a 20Y scheme, followed by a 20Y to 25Y investment at the r(20Y, 25Y) forward rate:

 $100(1 + 0.020)^{20}(1 + r(20Y, 25Y))^5$

- Both schemes should give the same outcome, otherwise there could be arbitrage (e.g. if scheme 1 had a lower outcome, then you could borrow S money via scheme 1 and invest it via scheme 2)
- Arbitrage lets us calculate the forward rate r(20Y, 25Y) from rates we observe today

Stochastic interest rates

- Stochastic interest rates and stock prices
- Need to model it with Wiener process:

 $dr(t) = (\theta(t) - \kappa r(t))dt + \sigma(t)dW(t), \ r(t) = r_0$

• No-arbitrage principle says that any financial instrument dependent on interest rate follows the following PDE for its value: $f' = \frac{1}{2} \sigma^2(t) f'' = r(t)(0 - m) f' = mf = 0$

$$f'_t + \frac{1}{2}\sigma^2(t)f''_{xx} + \kappa(t)(\theta - x)f'_x - xf = 0 \qquad r(t) = x(t) + m(t)$$

Fair price

- Fair price of an investment: calculate all expected future cash flows (payments/costs) for an investment, and calculate how much these flows are worth today (i.e. discount future cash flows).
- Future cash flows can be uncertain (stochastic interest rates, bankruptcy, ...)
- Determining today's value of future cash flows is not trivial either (interest rate dependent)
- Quants calculate fair prices, traders/sales people will add a margin to make a living

Questions?

